Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (4): 43210   https://doi.org/10.1007/s11467-023-1386-z
  本期目录
Inheritance of the exciton geometric structure from Bloch electrons in two-dimensional layered semiconductors
Jianju Tang1, Songlei Wang1, Hongyi Yu1,2()
1. Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China
2. State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University (Guangzhou Campus), Guangzhou 510275, China
 全文: PDF(4661 KB)   HTML
Abstract

We theoretically studied the exciton geometric structure in layered semiconducting transition metal dichalcogenides. Based on a three-orbital tight-binding model for Bloch electrons which incorporates their geometric structures, an effective exciton Hamiltonian is constructed and solved perturbatively to reveal the relation between the exciton and its electron/hole constituent. We show that the electron−hole Coulomb interaction gives rise to a non-trivial inheritance of the exciton geometric structure from Bloch electrons, which manifests as a valley-dependent center-of-mass anomalous Hall velocity of the exciton when two external fields are applied on the electron and hole constituents, respectively. The obtained center-of-mass anomalous velocity is found to exhibit a non-trivial dependence on the fields, as well as the wave function and valley index of the exciton. These findings can serve as a general guide for the field-control of the valley-dependent exciton transport, enabling the design of novel quantum optoelectronic and valleytronic devices.

Key wordstransition metal dichalcogenides    exciton    geometric structure    Berry curvature    van der Waals stacking
收稿日期: 2023-10-24      出版日期: 2024-03-08
Corresponding Author(s): Hongyi Yu   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(4): 43210.
Jianju Tang, Songlei Wang, Hongyi Yu. Inheritance of the exciton geometric structure from Bloch electrons in two-dimensional layered semiconductors. Front. Phys. , 2024, 19(4): 43210.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1386-z
https://academic.hep.com.cn/fop/CN/Y2024/V19/I4/43210
Fig.1  
Ωr Ωc Ωv ΩT(τ=+ 1) ΩT(τ= 1) δΩ(τ=+1) δΩ(τ=1)
0.023 −0.125 0.148 −0.072 0.030 0.036 −0.138
Tab.1  
Fig.2  
Fig.3  
Fig.4  
  
1 Ciarrocchi A., Tagarelli F., Avsar A., Kis A.. Excitonic devices with van der Waals heterostructures: Valleytronics meets twistronics. Nat. Rev. Mater., 2022, 7(6): 449
https://doi.org/10.1038/s41578-021-00408-7
2 F. Mak K., Xiao D., Shan J.. Light-valley interactions in 2D semiconductors. Nat. Photonics, 2018, 12(8): 451
https://doi.org/10.1038/s41566-018-0204-6
3 D. Xu X., Yao W., Xiao D., F. Heinz T.. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys., 2014, 10(5): 343
https://doi.org/10.1038/nphys2942
4 F. Mak K., Shan J.. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
https://doi.org/10.1038/nphoton.2015.282
5 H. Wang Q., Kalantar-Zadeh K., Kis A., N. Coleman J., S. Strano M.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
https://doi.org/10.1038/nnano.2012.193
6 Chernikov A., C. Berkelbach T., M. Hill H., Rigosi A., Li Y., Aslan B., R. Reichman D., S. Hybertsen M., F. Heinz T.. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett., 2014, 113(7): 076802
https://doi.org/10.1103/PhysRevLett.113.076802
7 Y. Qiu D., H. da Jornada F., G. Louie S.. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett., 2013, 111(21): 216805
https://doi.org/10.1103/PhysRevLett.111.216805
8 L. Yang X., H. Guo S., T. Chan F., W. Wong K., Y. Ching W.. Analytic solution of a two-dimensional hydrogen atom (I): Nonrelativistic theory. Phys. Rev. A, 1991, 43(3): 1186
https://doi.org/10.1103/PhysRevA.43.1186
9 Cao T., Wang G., Han W., Ye H., Zhu C., Shi J., Niu Q., Tan P., Wang E., Liu B., Feng J.. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun., 2012, 3(1): 887
https://doi.org/10.1038/ncomms1882
10 L. Zeng H., Dai J., Yao W., Xiao D., Cui X.. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 2012, 7(8): 490
https://doi.org/10.1038/nnano.2012.95
11 F. Mak K., He K., Shan J., F. Heinz T.. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494
https://doi.org/10.1038/nnano.2012.96
12 M. Jones A., Yu H., J. Ghimire N., Wu S., Aivazian G., S. Ross J., Zhao B., Yan J., G. Mandrus D., Xiao D., Yao W., Xu X.. Optical generation of excitonic valley coherence in monolayer WSe. Nat. Nanotechnol., 2013, 8(9): 634
https://doi.org/10.1038/nnano.2013.151
13 Rivera P., Yu H., L. Seyler K., P. Wilson N., Yao W., Xu X.. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol., 2018, 13(11): 1004
https://doi.org/10.1038/s41565-018-0193-0
14 Xiao D., C. Chang M., Niu Q.. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
https://doi.org/10.1103/RevModPhys.82.1959
15 Xiao D., B. Liu G., Feng W., Xu X., Yao W.. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802
https://doi.org/10.1103/PhysRevLett.108.196802
16 Aivazian G., Gong Z., M. Jones A., L. Chu R., Yan J., G. Mandrus D., Zhang C., Cobden D., Yao W., Xu X.. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys., 2015, 11(2): 148
https://doi.org/10.1038/nphys3201
17 Srivastava A., Sidler M., V. Allain A., S. Lembke D., Kis A., Imamoğlu A.. Valley Zeeman effect in elementary optical excitations of monolayer WSe. Nat. Phys., 2015, 11(2): 141
https://doi.org/10.1038/nphys3203
18 MacNeill D., Heikes C., F. Mak K., Anderson Z., Kormányos A., Zólyomi V., Park J., C. Ralph D.. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett., 2015, 114(3): 037401
https://doi.org/10.1103/PhysRevLett.114.037401
19 Kormányos A., Zólyomi V., I. Fal’ko V., Burkard G.. Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2. Phys. Rev. B, 2018, 98(3): 035408
https://doi.org/10.1103/PhysRevB.98.035408
20 F. Mak K., L. McGill K., Park J., L. McEuen P.. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489
https://doi.org/10.1126/science.1250140
21 Yu T., W. Wu M.. Valley depolarization dynamics and valley Hall effect of excitons in monolayer and bilayer MoS2. Phys. Rev. B, 2016, 93(4): 045414
https://doi.org/10.1103/PhysRevB.93.045414
22 Yao W., Xiao D., Niu Q.. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B, 2008, 77(23): 235406
https://doi.org/10.1103/PhysRevB.77.235406
23 Z. Zhu Q., W. Y. Tu M., Tong Q., Yao W.. Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer. Sci. Adv., 2019, 5(1): eaau6120
https://doi.org/10.1126/sciadv.aau6120
24 Y. Jiang C.Rasmita A.Ma H.Tan Q.Zhang Z. Huang Z.Lai S.Wang N.Liu S.Liu X. Yu T.Xiong Q. Gao W., A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures, Nat. Electron. 5(1), 23 (2021)
25 Onga M., Zhang Y., Ideue T., Iwasa Y.. Exciton Hall effect in monolayer MoS2. Nat. Mater., 2017, 16(12): 1193
https://doi.org/10.1038/nmat4996
26 Huang Z., Liu Y., Dini K., Tan Q., Liu Z., Fang H., Liu J., Liew T., Gao W.. Robust room temperature valley Hall effect of interlayer excitons. Nano Lett., 2020, 20(2): 1345
https://doi.org/10.1021/acs.nanolett.9b04836
27 Yao W., Niu Q.. Berry phase effect on the exciton transport and on the exciton Bose‒Einstein condensate. Phys. Rev. Lett., 2008, 101(10): 106401
https://doi.org/10.1103/PhysRevLett.101.106401
28 Y. Yu H., Yao W.. Electrically tunable topological transport of moire polaritons. Sci. Bull. (Beijing), 2020, 65(18): 1555
https://doi.org/10.1016/j.scib.2020.05.030
29 Ubrig N., Jo S., Philippi M., Costanzo D., Berger H., B. Kuzmenko A., F. Morpurgo A.. Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett., 2017, 17(9): 5719
https://doi.org/10.1021/acs.nanolett.7b02666
30 Trushin M., O. Goerbig M., Belzig W.. Model prediction of self-rotating excitons in two-dimensional transition-metal dichalcogenides. Phys. Rev. Lett., 2018, 120(18): 187401
https://doi.org/10.1103/PhysRevLett.120.187401
31 Hichri A., Jaziri S., O. Goerbig M.. Charged excitons in two-dimensional transition metal dichalcogenides: Semiclassical calculation of Berry curvature effects. Phys. Rev. B, 2019, 100(11): 115426
https://doi.org/10.1103/PhysRevB.100.115426
32 Srivastava A., Imamoğlu A.. Signatures of Bloch-band geometry on excitons: Nonhydrogenic spectra in transition-metal dichalcogenides. Phys. Rev. Lett., 2015, 115(16): 166802
https://doi.org/10.1103/PhysRevLett.115.166802
33 H. Zhou J., Y. Shan W., Yao W., Xiao D.. Berry phase modification to the energy spectrum of excitons. Phys. Rev. Lett., 2015, 115(16): 166803
https://doi.org/10.1103/PhysRevLett.115.166803
34 Gong P., Yu H., Wang Y., Yao W.. Optical selection rules for excitonic Rydberg series in the massive Dirac cones of hexagonal two-dimensional materials. Phys. Rev. B, 2017, 95(12): 125420
https://doi.org/10.1103/PhysRevB.95.125420
35 Cao T., Wu M., G. Louie S.. Unifying optical selection rules for excitons in two dimensions: Band topology and winding numbers. Phys. Rev. Lett., 2018, 120(8): 087402
https://doi.org/10.1103/PhysRevLett.120.087402
36 O. Zhang X., Y. Shan W., Xiao D.. Optical selection rule of excitons in gapped chiral fermion systems. Phys. Rev. Lett., 2018, 120(7): 077401
https://doi.org/10.1103/PhysRevLett.120.077401
37 B. Liu G., Y. Shan W., Yao Y., Yao W., Xiao D.. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B, 2013, 88(8): 085433
https://doi.org/10.1103/PhysRevB.88.085433
38 C. Wu F., Y. Qu F., H. MacDonald A.. Exciton band structure of monolayer MoS2. Phys. Rev. B, 2015, 91(7): 075310
https://doi.org/10.1103/PhysRevB.91.075310
39 L. Ye Z., Cao T., O’Brien K., Zhu H., Yin X., Wang Y., G. Louie S., Zhang X.. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517): 214
https://doi.org/10.1038/nature13734
40 Y. Qiu D., Cao T., G. Louie S.. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: Theory and first-principles calculations. Phys. Rev. Lett., 2015, 115(17): 176801
https://doi.org/10.1103/PhysRevLett.115.176801
41 K. Yong C., I. B. Utama M., S. Ong C., Cao T., C. Regan E., Horng J., Shen Y., Cai H., Watanabe K., Taniguchi T., Tongay S., Deng H., Zettl A., G. Louie S., Wang F.. Valley-dependent exciton fine structure and Autler‒Townes doublets from Berry phases in monolayer MoSe2. Nat. Mater., 2019, 18(10): 1065
https://doi.org/10.1038/s41563-019-0447-8
42 Chaudhary S., Knapp C., Refael G.. Anomalous exciton transport in response to a uniform in-plane electric field. Phys. Rev. B, 2021, 103(16): 165119
https://doi.org/10.1103/PhysRevB.103.165119
43 L. Cao J., A. Fertig H., Brey L.. Quantum geometric exciton drift velocity. Phys. Rev. B, 2021, 103(11): 115422
https://doi.org/10.1103/PhysRevB.103.115422
44 Q. Sui M., Chen G., Ma L., Y. Shan W., Tian D., Watanabe K., Taniguchi T., Jin X., Yao W., Xiao D., Zhang Y.. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys., 2015, 11(12): 1027
https://doi.org/10.1038/nphys3485
45 Shimazaki Y., Yamamoto M., V. Borzenets I., Watanabe K., Taniguchi T., Tarucha S.. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys., 2015, 11(12): 1032
https://doi.org/10.1038/nphys3551
46 Ju L., Wang L., Cao T., Taniguchi T., Watanabe K., G. Louie S., Rana F., Park J., Hone J., Wang F., L. McEuen P.. Tunable excitons in bilayer graphene. Science, 2017, 358(6365): 907
https://doi.org/10.1126/science.aam9175
47 Y. Yu H., Yao W.. Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor moire superlattices. Phys. Rev. X, 2021, 11(2): 021042
https://doi.org/10.1103/PhysRevX.11.021042
48 Y. Yu H., B. Liu G., Gong P., Xu X., Yao W.. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun., 2014, 5(1): 3876
https://doi.org/10.1038/ncomms4876
49 H. He M., Rivera P., Van Tuan D., P. Wilson N., Yang M., Taniguchi T., Watanabe K., Yan J., G. Mandrus D., Yu H., Dery H., Yao W., Xu X.. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun., 2020, 11(1): 618
https://doi.org/10.1038/s41467-020-14472-0
50 Cudazzo P., V. Tokatly I., Rubio A.. Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane. Phys. Rev. B, 2011, 84(8): 085406
https://doi.org/10.1103/PhysRevB.84.085406
51 Danovich M., A. Ruiz-Tijerina D., J. Hunt R., Szyniszewski M., D. Drummond N., I. Fal’ko V.. Localized interlayer complexes in heterobilayer transition metal dichalcogenides. Phys. Rev. B, 2018, 97(19): 195452
https://doi.org/10.1103/PhysRevB.97.195452
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed