Inheritance of the exciton geometric structure from Bloch electrons in two-dimensional layered semiconductors
Jianju Tang1, Songlei Wang1, Hongyi Yu1,2()
1. Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, China 2. State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University (Guangzhou Campus), Guangzhou 510275, China
We theoretically studied the exciton geometric structure in layered semiconducting transition metal dichalcogenides. Based on a three-orbital tight-binding model for Bloch electrons which incorporates their geometric structures, an effective exciton Hamiltonian is constructed and solved perturbatively to reveal the relation between the exciton and its electron/hole constituent. We show that the electron−hole Coulomb interaction gives rise to a non-trivial inheritance of the exciton geometric structure from Bloch electrons, which manifests as a valley-dependent center-of-mass anomalous Hall velocity of the exciton when two external fields are applied on the electron and hole constituents, respectively. The obtained center-of-mass anomalous velocity is found to exhibit a non-trivial dependence on the fields, as well as the wave function and valley index of the exciton. These findings can serve as a general guide for the field-control of the valley-dependent exciton transport, enabling the design of novel quantum optoelectronic and valleytronic devices.
Ciarrocchi A., Tagarelli F., Avsar A., Kis A.. Excitonic devices with van der Waals heterostructures: Valleytronics meets twistronics. Nat. Rev. Mater., 2022, 7(6): 449 https://doi.org/10.1038/s41578-021-00408-7
D. Xu X., Yao W., Xiao D., F. Heinz T.. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys., 2014, 10(5): 343 https://doi.org/10.1038/nphys2942
4
F. Mak K., Shan J.. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216 https://doi.org/10.1038/nphoton.2015.282
5
H. Wang Q., Kalantar-Zadeh K., Kis A., N. Coleman J., S. Strano M.. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699 https://doi.org/10.1038/nnano.2012.193
6
Chernikov A., C. Berkelbach T., M. Hill H., Rigosi A., Li Y., Aslan B., R. Reichman D., S. Hybertsen M., F. Heinz T.. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett., 2014, 113(7): 076802 https://doi.org/10.1103/PhysRevLett.113.076802
7
Y. Qiu D., H. da Jornada F., G. Louie S.. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett., 2013, 111(21): 216805 https://doi.org/10.1103/PhysRevLett.111.216805
8
L. Yang X., H. Guo S., T. Chan F., W. Wong K., Y. Ching W.. Analytic solution of a two-dimensional hydrogen atom (I): Nonrelativistic theory. Phys. Rev. A, 1991, 43(3): 1186 https://doi.org/10.1103/PhysRevA.43.1186
9
Cao T., Wang G., Han W., Ye H., Zhu C., Shi J., Niu Q., Tan P., Wang E., Liu B., Feng J.. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun., 2012, 3(1): 887 https://doi.org/10.1038/ncomms1882
10
L. Zeng H., Dai J., Yao W., Xiao D., Cui X.. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol., 2012, 7(8): 490 https://doi.org/10.1038/nnano.2012.95
11
F. Mak K., He K., Shan J., F. Heinz T.. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494 https://doi.org/10.1038/nnano.2012.96
12
M. Jones A., Yu H., J. Ghimire N., Wu S., Aivazian G., S. Ross J., Zhao B., Yan J., G. Mandrus D., Xiao D., Yao W., Xu X.. Optical generation of excitonic valley coherence in monolayer WSe. Nat. Nanotechnol., 2013, 8(9): 634 https://doi.org/10.1038/nnano.2013.151
13
Rivera P., Yu H., L. Seyler K., P. Wilson N., Yao W., Xu X.. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol., 2018, 13(11): 1004 https://doi.org/10.1038/s41565-018-0193-0
Xiao D., B. Liu G., Feng W., Xu X., Yao W.. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802 https://doi.org/10.1103/PhysRevLett.108.196802
16
Aivazian G., Gong Z., M. Jones A., L. Chu R., Yan J., G. Mandrus D., Zhang C., Cobden D., Yao W., Xu X.. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys., 2015, 11(2): 148 https://doi.org/10.1038/nphys3201
17
Srivastava A., Sidler M., V. Allain A., S. Lembke D., Kis A., Imamoğlu A.. Valley Zeeman effect in elementary optical excitations of monolayer WSe. Nat. Phys., 2015, 11(2): 141 https://doi.org/10.1038/nphys3203
18
MacNeill D., Heikes C., F. Mak K., Anderson Z., Kormányos A., Zólyomi V., Park J., C. Ralph D.. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett., 2015, 114(3): 037401 https://doi.org/10.1103/PhysRevLett.114.037401
19
Kormányos A., Zólyomi V., I. Fal’ko V., Burkard G.. Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2. Phys. Rev. B, 2018, 98(3): 035408 https://doi.org/10.1103/PhysRevB.98.035408
20
F. Mak K., L. McGill K., Park J., L. McEuen P.. The valley Hall effect in MoS2 transistors. Science, 2014, 344(6191): 1489 https://doi.org/10.1126/science.1250140
21
Yu T., W. Wu M.. Valley depolarization dynamics and valley Hall effect of excitons in monolayer and bilayer MoS2. Phys. Rev. B, 2016, 93(4): 045414 https://doi.org/10.1103/PhysRevB.93.045414
22
Yao W., Xiao D., Niu Q.. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B, 2008, 77(23): 235406 https://doi.org/10.1103/PhysRevB.77.235406
23
Z. Zhu Q., W. Y. Tu M., Tong Q., Yao W.. Gate tuning from exciton superfluid to quantum anomalous Hall in van der Waals heterobilayer. Sci. Adv., 2019, 5(1): eaau6120 https://doi.org/10.1126/sciadv.aau6120
24
Y. Jiang C.Rasmita A.Ma H.Tan Q.Zhang Z. Huang Z.Lai S.Wang N.Liu S.Liu X. Yu T.Xiong Q. Gao W., A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures, Nat. Electron. 5(1), 23 (2021)
25
Onga M., Zhang Y., Ideue T., Iwasa Y.. Exciton Hall effect in monolayer MoS2. Nat. Mater., 2017, 16(12): 1193 https://doi.org/10.1038/nmat4996
26
Huang Z., Liu Y., Dini K., Tan Q., Liu Z., Fang H., Liu J., Liew T., Gao W.. Robust room temperature valley Hall effect of interlayer excitons. Nano Lett., 2020, 20(2): 1345 https://doi.org/10.1021/acs.nanolett.9b04836
27
Yao W., Niu Q.. Berry phase effect on the exciton transport and on the exciton Bose‒Einstein condensate. Phys. Rev. Lett., 2008, 101(10): 106401 https://doi.org/10.1103/PhysRevLett.101.106401
Ubrig N., Jo S., Philippi M., Costanzo D., Berger H., B. Kuzmenko A., F. Morpurgo A.. Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett., 2017, 17(9): 5719 https://doi.org/10.1021/acs.nanolett.7b02666
30
Trushin M., O. Goerbig M., Belzig W.. Model prediction of self-rotating excitons in two-dimensional transition-metal dichalcogenides. Phys. Rev. Lett., 2018, 120(18): 187401 https://doi.org/10.1103/PhysRevLett.120.187401
31
Hichri A., Jaziri S., O. Goerbig M.. Charged excitons in two-dimensional transition metal dichalcogenides: Semiclassical calculation of Berry curvature effects. Phys. Rev. B, 2019, 100(11): 115426 https://doi.org/10.1103/PhysRevB.100.115426
32
Srivastava A., Imamoğlu A.. Signatures of Bloch-band geometry on excitons: Nonhydrogenic spectra in transition-metal dichalcogenides. Phys. Rev. Lett., 2015, 115(16): 166802 https://doi.org/10.1103/PhysRevLett.115.166802
33
H. Zhou J., Y. Shan W., Yao W., Xiao D.. Berry phase modification to the energy spectrum of excitons. Phys. Rev. Lett., 2015, 115(16): 166803 https://doi.org/10.1103/PhysRevLett.115.166803
34
Gong P., Yu H., Wang Y., Yao W.. Optical selection rules for excitonic Rydberg series in the massive Dirac cones of hexagonal two-dimensional materials. Phys. Rev. B, 2017, 95(12): 125420 https://doi.org/10.1103/PhysRevB.95.125420
35
Cao T., Wu M., G. Louie S.. Unifying optical selection rules for excitons in two dimensions: Band topology and winding numbers. Phys. Rev. Lett., 2018, 120(8): 087402 https://doi.org/10.1103/PhysRevLett.120.087402
36
O. Zhang X., Y. Shan W., Xiao D.. Optical selection rule of excitons in gapped chiral fermion systems. Phys. Rev. Lett., 2018, 120(7): 077401 https://doi.org/10.1103/PhysRevLett.120.077401
37
B. Liu G., Y. Shan W., Yao Y., Yao W., Xiao D.. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B, 2013, 88(8): 085433 https://doi.org/10.1103/PhysRevB.88.085433
L. Ye Z., Cao T., O’Brien K., Zhu H., Yin X., Wang Y., G. Louie S., Zhang X.. Probing excitonic dark states in single-layer tungsten disulphide. Nature, 2014, 513(7517): 214 https://doi.org/10.1038/nature13734
40
Y. Qiu D., Cao T., G. Louie S.. Nonanalyticity, valley quantum phases, and lightlike exciton dispersion in monolayer transition metal dichalcogenides: Theory and first-principles calculations. Phys. Rev. Lett., 2015, 115(17): 176801 https://doi.org/10.1103/PhysRevLett.115.176801
41
K. Yong C., I. B. Utama M., S. Ong C., Cao T., C. Regan E., Horng J., Shen Y., Cai H., Watanabe K., Taniguchi T., Tongay S., Deng H., Zettl A., G. Louie S., Wang F.. Valley-dependent exciton fine structure and Autler‒Townes doublets from Berry phases in monolayer MoSe2. Nat. Mater., 2019, 18(10): 1065 https://doi.org/10.1038/s41563-019-0447-8
42
Chaudhary S., Knapp C., Refael G.. Anomalous exciton transport in response to a uniform in-plane electric field. Phys. Rev. B, 2021, 103(16): 165119 https://doi.org/10.1103/PhysRevB.103.165119
Q. Sui M., Chen G., Ma L., Y. Shan W., Tian D., Watanabe K., Taniguchi T., Jin X., Yao W., Xiao D., Zhang Y.. Gate-tunable topological valley transport in bilayer graphene. Nat. Phys., 2015, 11(12): 1027 https://doi.org/10.1038/nphys3485
45
Shimazaki Y., Yamamoto M., V. Borzenets I., Watanabe K., Taniguchi T., Tarucha S.. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys., 2015, 11(12): 1032 https://doi.org/10.1038/nphys3551
46
Ju L., Wang L., Cao T., Taniguchi T., Watanabe K., G. Louie S., Rana F., Park J., Hone J., Wang F., L. McEuen P.. Tunable excitons in bilayer graphene. Science, 2017, 358(6365): 907 https://doi.org/10.1126/science.aam9175
47
Y. Yu H., Yao W.. Luminescence anomaly of dipolar valley excitons in homobilayer semiconductor moire superlattices. Phys. Rev. X, 2021, 11(2): 021042 https://doi.org/10.1103/PhysRevX.11.021042
48
Y. Yu H., B. Liu G., Gong P., Xu X., Yao W.. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun., 2014, 5(1): 3876 https://doi.org/10.1038/ncomms4876
49
H. He M., Rivera P., Van Tuan D., P. Wilson N., Yang M., Taniguchi T., Watanabe K., Yan J., G. Mandrus D., Yu H., Dery H., Yao W., Xu X.. Valley phonons and exciton complexes in a monolayer semiconductor. Nat. Commun., 2020, 11(1): 618 https://doi.org/10.1038/s41467-020-14472-0
50
Cudazzo P., V. Tokatly I., Rubio A.. Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane. Phys. Rev. B, 2011, 84(8): 085406 https://doi.org/10.1103/PhysRevB.84.085406
51
Danovich M., A. Ruiz-Tijerina D., J. Hunt R., Szyniszewski M., D. Drummond N., I. Fal’ko V.. Localized interlayer complexes in heterobilayer transition metal dichalcogenides. Phys. Rev. B, 2018, 97(19): 195452 https://doi.org/10.1103/PhysRevB.97.195452