Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (4): 43209   https://doi.org/10.1007/s11467-023-1388-x
  本期目录
A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer
Haiyan Zhang1, Zhiwei Guo1(), Yunhui Li2, Yaping Yang1, Yuguang Chen1(), Hong Chen1
1. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2. Department of Electrical Engineering, Tongji University, Shanghai 201804, China
 全文: PDF(5326 KB)   HTML
Abstract

Non-Hermitian systems with parity−time (PT)-symmetry have been extensively studied and rapidly developed in resonance wireless power transfer (WPT). The WPT system that satisfies PT-symmetry always has real eigenvalues, which promote efficient energy transfer. However, meeting the condition of PT-symmetry is one of the most puzzling issues. Stable power transfer under different transmission conditions is also a great challenge. Bound state in the continuum (BIC) supporting extreme quality-factor mode provides an opportunity for efficient WPT. Here, we propose theoretically and demonstrate experimentally that BIC widely exists in resonance-coupled systems without PT-symmetry, and it can even realize more stable and efficient power transfer than PT-symmetric systems. Importantly, BIC for efficient WPT is universal and suitable in standard second-order and even high-order WPT systems. Our results not only extend non-Hermitian physics beyond PT-symmetry, but also bridge the gap between BIC and practical application engineering, such as high-performance WPT, wireless sensing and communications.

Key wordsnon-Hermitian physics    parity−time asymmetry    bound state in the continuum    wireless power transfer
收稿日期: 2023-12-25      出版日期: 2024-03-19
Corresponding Author(s): Zhiwei Guo,Yuguang Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(4): 43209.
Haiyan Zhang, Zhiwei Guo, Yunhui Li, Yaping Yang, Yuguang Chen, Hong Chen. A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer. Front. Phys. , 2024, 19(4): 43209.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1388-x
https://academic.hep.com.cn/fop/CN/Y2024/V19/I4/43209
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Krasnok A. , G. Baranov D. , Generalov A. , Li S. , Alu A. . Coherently enhanced wireless power transfer. Phys. Rev. Lett., 2018, 120(14): 143901
https://doi.org/10.1103/PhysRevLett.120.143901
2 Song M. , Jayathurathnage P. , Zanganeh E. , Krasikova M. , Smirnov P. , Belov P. , Kapitanova P. , Simovski C. , Tretyakov S. , Krasnok A. . Wireless power transfer based on novel physical concepts. Nat. Electron., 2021, 4(10): 707
https://doi.org/10.1038/s41928-021-00658-x
3 Kurs A. , Karalis A. , Moffatt R. , D. Joannopoulos J. , Fisher P. , Soljačić M. . Wireless power transfer via strongly coupled magnetic resonances. Science, 2007, 317(5834): 83
https://doi.org/10.1126/science.1143254
4 Xie Y. , Zhang Z. , Lin Y. , Feng T. , Xu Y. . Magnetic quasi-bound state in the continuum for wireless power transfer. Phys. Rev. Appl., 2021, 15(4): 044024
https://doi.org/10.1103/PhysRevApplied.15.044024
5 Assawaworrarit S. , Yu X. , Fan S. . Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature, 2017, 546(7658): 387
https://doi.org/10.1038/nature22404
6 Li J.Zhang B., A wireless power transfer system based on quasi‐parity–time symmetry with gain–loss ratio modulation, Int. J. Circuit Theory Appl. 51(3), 1039 (2023)
7 Miao Z. , Liu D. , Gong C. . Efficiency enhancement for an inductive wireless power transfer system by optimizing the impedance matching networks. IEEE Trans. Biomed. Circuits Syst., 2017, 11(5): 1160
https://doi.org/10.1109/TBCAS.2017.2740266
8 Song J. , Yang F. , Guo Z. , Wu X. , Zhu K. , Jiang J. , Sun Y. , Li Y. , Jiang H. , Chen H. . Wireless power transfer via topological modes in dimer chains. Phys. Rev. Appl., 2021, 15(1): 014009
https://doi.org/10.1103/PhysRevApplied.15.014009
9 Guo Z.Jiang J.Wu X.Zhang H.Hu S.Wang Y.Li Y.Yang Y.Chen H., Rotation manipulation of high-order PT-symmetry for robust wireless power transfer, Fundamental Res., doi: 10.1016/j.fmre.2023.11.010 (2023)
10 Guo Z. , Yang F. , Zhang H. , Wu X. , Wu Q. , Zhu K. , Jiang J. , Jiang H. , Yang Y. , Li Y. , Chen H. . Level pinning of anti-PT symmetric circuits for efficient wireless power transfer. Natl. Sci. Rev., 2023, 11(1): nwad172
https://doi.org/10.1093/nsr/nwad172
11 L. Cannon B. , F. Hoburg J. , D. Stancil D. , C. Goldstein S. . Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron., 2009, 24(7): 1819
https://doi.org/10.1109/TPEL.2009.2017195
12 Zhang L. , Yang Y. , Jiang Z. , Chen Q. , Yan Q. , Wu Z. , Zhang B. , Huangfu J. , Chen H. . Demonstration of topological wireless power transfer. Sci. Bull. (Beijing), 2021, 66(10): 974
https://doi.org/10.1016/j.scib.2021.01.028
13 Sakhdari M. , Hajizadegan M. , Y. Chen P. . Robust extended-range wireless power transfer using a higher-order PT-symmetric platform. Phys. Rev. Res., 2020, 2(1): 013152
https://doi.org/10.1103/PhysRevResearch.2.013152
14 Zhou J. , Zhang B. , Xiao W. , Qiu D. , Chen Y. . Nonlinear parity–time-symmetric model for constant efficiency wireless power transfer: Application to a drone-in-flight wireless charging platform. IEEE Trans. Ind. Electron., 2019, 66(5): 4097
https://doi.org/10.1109/TIE.2018.2864515
15 Kim H. , Yoo S. , Joo H. , Lee J. , An D. , Nam S. , Han H. , H. Kim D. , Kim S. . Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity–time symmetry. Sci. Adv., 2022, 8(24): eabo4610
https://doi.org/10.1126/sciadv.abo4610
16 Guo Z. , Long Y. , Jiang H. , Ren J. , Chen H. . Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Adv. Photonics, 2021, 3(3): 036001
https://doi.org/10.1117/1.AP.3.3.036001
17 P. Sample A. , A. Meyer D. , R. Smith J. . Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron., 2011, 58(2): 544
https://doi.org/10.1109/TIE.2010.2046002
18 Zeng C. , Guo Z. , Zhu K. , Fan C. , Li G. , Jiang J. , Li Y. , Jiang H. , Yang Y. , Sun Y. , Chen H. . Efficient and stable wireless power transfer based on the non-Hermitian physics. Chin. Phys. B, 2022, 31(1): 010307
https://doi.org/10.1088/1674-1056/ac3815
19 Tesla N. . Apparatus for transmitting electrical energy. U. S. Patent, 1914, 1: 119,732
20 Huang T. , Wang B. , Zhang W. , Zhao C. . Ultracompact energy transfer in anapole-based metachains. Nano Lett., 2021, 21(14): 6102
https://doi.org/10.1021/acs.nanolett.1c01571
21 X. Wang B. , Y. Zhao C. . Topological phonon polariton enhanced radiative heat transfer in bichromatic nanoparticle arrays mimicking Aubry–André–Harper model. Phys. Rev. B, 2023, 107(12): 125409
https://doi.org/10.1103/PhysRevB.107.125409
22 Wu Y. , Kang L. , H. Werner D. . Symmetry in non-Hermitian wireless power transfer systems. Phys. Rev. Lett., 2022, 129(20): 200201
https://doi.org/10.1103/PhysRevLett.129.200201
23 Hao X. , Yin K. , Zou J. , Wang R. , Huang Y. , Ma X. , Dong T. . Frequency-stable robust wireless power transfer based on high-order pseudo-Hermitian physics. Phys. Rev. Lett., 2023, 130(7): 077202
https://doi.org/10.1103/PhysRevLett.130.077202
24 Li A. , Wei H. , Cotrufo M. , Chen W. , Mann S. , Ni X. , Xu B. , Chen J. , Wang J. , Fan S. , W. Qiu C. , Alù A. , Chen L. . Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol., 2023, 18(7): 706
https://doi.org/10.1038/s41565-023-01408-0
25 Liang C. , Tang Y. , N. Xu A. , C. Liu Y. . Observation of exceptional points in thermal atomic ensembles. Phys. Rev. Lett., 2023, 130(26): 263601
https://doi.org/10.1103/PhysRevLett.130.263601
26 Li Y. , Ao Y. , Hu X. , Lu C. , T. Chan C. , Gong Q. . Unsupervised learning of non‐Hermitian photonic bulk topology. Laser Photonics Rev., 2023, 17(12): 2300481
https://doi.org/10.1002/lpor.202300481
27 Ke S. , Wen W. , Zhao D. , Wang Y. . Floquet engineering of the non-Hermitian skin effect in photonic waveguide arrays. Phys. Rev. A, 2023, 107(5): 053508
https://doi.org/10.1103/PhysRevA.107.053508
28 M. Zhang S. , Jin L. . Localization in non-Hermitian asymmetric rhombic lattice. Phys. Rev. Res., 2020, 2(3): 033127
https://doi.org/10.1103/PhysRevResearch.2.033127
29 El-Ganainy R. , G. Makris K. , Khajavikhan M. , H. Musslimani Z. , Rotter S. , N. Christodoulides D. . Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
https://doi.org/10.1038/nphys4323
30 M. Bender C.Boettcher S.N. Meisinger P., PT-symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999)
31 M. Bender C. , Boettcher S. . Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80(24): 5243
https://doi.org/10.1103/PhysRevLett.80.5243
32 Schindler J. , Li A. , C. Zheng M. , M. Ellis F. , Kottos T. . Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A, 2011, 84(4): 040101
https://doi.org/10.1103/PhysRevA.84.040101
33 Longhi S., PT-symmetric laser absorber, Phys. Rev. A 82(3), 031801 (2010)
34 D. Chong Y.Ge L.D. Stone A., PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)
35 Gao Z. , T. M. Fryslie S. , J. Thompson B. , S. Carney P. , D. Choquette K. . Parity–time symmetry in coherently coupled vertical cavity laser arrays. Optica, 2017, 4(3): 323
https://doi.org/10.1364/OPTICA.4.000323
36 M. Lee J. , Factor S. , Lin Z. , Vitebskiy I. , M. Ellis F. , Kottos T. . Reconfigurable directional lasing modes in cavities with generalized PT symmetry. Phys. Rev. Lett., 2014, 112(25): 253902
https://doi.org/10.1103/PhysRevLett.112.253902
37 Sun Y. , Tan W. , Q. Li H. , Li J. , Chen H. . Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett., 2014, 112(14): 143903
https://doi.org/10.1103/PhysRevLett.112.143903
38 Wang C. , R. Sweeney W. , D. Stone A. , Yang L. . Coherent perfect absorption at an exceptional point. Science, 2021, 373(6560): 1261
https://doi.org/10.1126/science.abj1028
39 Hajizadegan M. , Sakhdari M. , Liao S. , Y. Chen P. . High-sensitivity wireless displacement sensing enabled by PT-symmetric telemetry. IEEE Trans. Antenn. Propag., 2019, 67(5): 3445
https://doi.org/10.1109/TAP.2019.2905892
40 Sakhdari M. , Hajizadegan M. , Zhong Q. , N. Christodoulides D. , El-Ganainy R. , Y. Chen P. . Experimental observation of PT symmetry breaking near divergent exceptional points. Phys. Rev. Lett., 2019, 123(19): 193901
https://doi.org/10.1103/PhysRevLett.123.193901
41 Xiao Z. , Li H. , Kottos T. , Alu A. . Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett., 2019, 123(21): 213901
https://doi.org/10.1103/PhysRevLett.123.213901
42 Guo Z. , Zhang T. , Song J. , Jiang H. , Chen H. . Sensitivity of topological edge states in a non-Hermitian dimer chain. Photon. Res., 2021, 9(4): 574
https://doi.org/10.1364/PRJ.413873
43 Qu Y. , Zhang B. , Gu W. , Li J. , Shu X. . Distance extension of S-PS wireless power transfer system based on parity–time symmetry. IEEE Trans. Circuits Syst. II Express Briefs, 2023, 70(8): 2954
https://doi.org/10.1109/TCSII.2023.3250236
44 Kim J. , Son H.-C. , Kim K.-H. , Park Y.-J. . Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil. IEEE Antennas Wirel. Propag. Lett., 2011, 10: 389
https://doi.org/10.1109/LAWP.2011.2150192
45 Saha C. , Anya I. , Alexandru C. , Jinks R. . Wireless power transfer using relay resonators. Appl. Phys. Lett., 2018, 112(26): 263902
https://doi.org/10.1063/1.5022032
46 Chen H.Qiu D.Rong C.Zhang B., A double-transmitting coil wireless power transfer system based on parity time symmetry principle, IEEE Trans. Power Electron. 38(11), 13396 (2023)
47 W. Hsu C. , Zhen B. , D. Stone A. , D. Joannopoulos J. , Soljačić M. . Bound states in the continuum. Nat. Rev. Mater., 2016, 1(9): 16048
https://doi.org/10.1038/natrevmats.2016.48
48 Wang J. , Shi L. , Zi J. . Spin Hall effect of light via momentum-space topological vortices around bound sates in the continuum. Phys. Rev. Lett., 2022, 129(23): 236101
https://doi.org/10.1103/PhysRevLett.129.236101
49 Zhang H. , Liu S. , Guo Z. , Hu S. , Chen Y. , Li Y. , Li Y. , Chen H. . Topological bound state in the continuum induced unidirectional acoustic perfect absorption. Sci. China Phys. Mech. Astron., 2023, 66(8): 284311
https://doi.org/10.1007/s11433-023-2136-y
50 X. Wang X. , Guo Z. , Song J. , Jiang H. , Chen H. , Hu X. . Unique Huygens–Fresnel electromagnetic transportation of chiral Dirac wavelet in topological photonic crystal. Nat. Commun., 2023, 14(1): 3040
https://doi.org/10.1038/s41467-023-38325-8
51 Wang Q. , Zhu C. , Zheng X. , Xue H. , Zhang B. , D. Chong Y. . Continuum of bound states in a non-Hermitian model. Phys. Rev. Lett., 2023, 130(10): 103602
https://doi.org/10.1103/PhysRevLett.130.103602
52 Fan S. , Suh W. , D. Joannopoulos J. . Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 2003, 20(3): 569
https://doi.org/10.1364/JOSAA.20.000569
53 Guo Z. , Jiang H. , Li Y. , Chen H. , S. Agarwal G. . Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material. Opt. Express, 2018, 26(2): 627
https://doi.org/10.1364/OE.26.000627
54 Zhang H. , Zhu K. , Guo Z. , Chen Y. , Sun Y. , Jiang J. , Li Y. , Yu Z. , Chen H. . Robustness of wireless power transfer systems with parity–time symmetry and asymmetry. Energies, 2023, 16(12): 4605
https://doi.org/10.3390/en16124605
[1] fop-21388-OF-zhouzhiwei_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed