A spin−rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk
Xin Nie1, Jun Li1, Trinanjan Datta2,3(), Dao-Xin Yao1,4()
1. Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, State Key Laboratory of Optoelectronic Materials and Technologies, Center for Neutron Science and Technology, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China 2. Department of Physics and Biophysics, Augusta University, 1120 15th Street, Augusta, Georgia 30912, USA 3. Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA 4. International Quantum Academy, Shenzhen 518048, China
Spin−rotation coupling (SRC) is a fundamental interaction that connects electronic spins with the rotational motion of a medium. We elucidate the Einstein−de Haas (EdH) effect and its inverse with SRC as the microscopic mechanism using the dynamic spin−lattice equations derived by elasticity theory and Lagrangian formalism. By applying the coupling equations to an iron disk in a magnetic field, we exhibit the transfer of angular momentum and energy between spins and lattice, with or without damping. The timescale of the angular momentum transfer from spins to the entire lattice is estimated by our theory to be on the order of 0.01 ns, for the disk with a radius of 100 nm. Moreover, we discover a linear relationship between the magnetic field strength and the rotation frequency, which is also enhanced by a higher ratio of Young’s modulus to Poisson’s coefficient. In the presence of damping, we notice that the spin−lattice relaxation time is nearly inversely proportional to the magnetic field. Our explorations will contribute to a better understanding of the EdH effect and provide valuable insights for magneto-mechanical manufacturing.
Corresponding Author(s):
Trinanjan Datta,Dao-Xin Yao
引用本文:
. [J]. Frontiers of Physics, 2024, 19(5): 53201.
Xin Nie, Jun Li, Trinanjan Datta, Dao-Xin Yao. A spin−rotation mechanism of Einstein–de Haas effect based on a ferromagnetic disk. Front. Phys. , 2024, 19(5): 53201.
E. Losby J., T. K. Sauer V., R. Freeman M.. Recent advances in mechanical torque studies of small-scale magnetism. J. Phys. D Appl. Phys., 2018, 51(48): 483001 https://doi.org/10.1088/1361-6463/aadccb
2
R. Tauchert S., Volkov M., Ehberger D., Kazenwadel D., Evers M., Lange H., Donges A., Book A., Kreuzpaintner W., Nowak U., Baum P.. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature, 2022, 602(7895): 73 https://doi.org/10.1038/s41586-021-04306-4
3
W. Richardson O., A mechanical effect accompanying magnetization, Phys. Rev. Ser. I 26(3), 248 (1908)
4
Einstein A.. Experimenteller nachweis der ampereschen molekularströme. Naturwissenschaften, 1915, 3(19): 237 https://doi.org/10.1007/BF01546392
Górecki W., Rzażewski K.. Making two dysprosium atoms rotate — Einstein‒de Haas effect revisited. Europhys. Lett., 2016, 116(2): 26004 https://doi.org/10.1209/0295-5075/116/26004
9
Wells T., P. Horsfield A., M. C. Foulkes W., L. Dudarev S.. The microscopic Einstein‒de Haas effect. J. Chem. Phys., 2019, 150(22): 224109 https://doi.org/10.1063/1.5092223
10
A. Wolf S., D. Awschalom D., A. Buhrman R., M. Daughton J., von Molnár S., L. Roukes M., Y. Chtchelkanova A., M. Treger D.. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294(5546): 1488 https://doi.org/10.1126/science.1065389
11
Xiong Z., Wu D., Valy Vardeny Z., Shi J.. Giant magnetoresistance in organic spin-valves. Nature, 2004, 427(6977): 821 https://doi.org/10.1038/nature02325
12
Sanvito S., R. Rocha A.. Molecular-spintronics: The art of driving spin through molecules. J. Comput. Theor. Nanosci., 2006, 3(5): 624 https://doi.org/10.1166/jctn.2006.3047
M. Chudnovsky E.. Conservation of angular momentum in the problem of tunneling of the magnetic moment. Phys. Rev. Lett., 1994, 72(21): 3433 https://doi.org/10.1103/PhysRevLett.72.3433
J. Nakane J., Kohno H.. Angular momentum of phonons and its application to single-spin relaxation. Phys. Rev. B, 2018, 97(17): 174403 https://doi.org/10.1103/PhysRevB.97.174403
Perera D., Eisenbach M., M. Nicholson D., M. Stocks G., P. Landau D.. Reinventing atomistic magnetic simulations with spin‒orbit coupling. Phys. Rev. B, 2016, 93(6): 060402 https://doi.org/10.1103/PhysRevB.93.060402
24
W. Ma P., H. Woo C., L. Dudarev S.. Large-scale simulation of the spin‒lattice dynamics in ferromagnetic iron. Phys. Rev. B, 2008, 78(2): 024434 https://doi.org/10.1103/PhysRevB.78.024434
25
Dednam W., Sabater C., Botha A., Lombardi E., Fernández-Rossier J., Caturla M.. Spin‒lattice dynamics simulation of the Einstein‒de Haas effect. Comput. Mater. Sci., 2022, 209: 111359 https://doi.org/10.1016/j.commatsci.2022.111359
26
M. Wallis T., Moreland J., Kabos P.. Einstein–de Haas effect in a NiFe film deposited on a microcantilever. Appl. Phys. Lett., 2006, 89(12): 122502 https://doi.org/10.1063/1.2355445
27
Jaafar R., M. Chudnovsky E., A. Garanin D.. Dynamics of the Einstein‒de Haas effect: Application to a magnetic cantilever. Phys. Rev. B, 2009, 79(10): 104410 https://doi.org/10.1103/PhysRevB.79.104410
Beaurepaire E., C. Merle J., Daunois A., Y. Bigot J.. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett., 1996, 76(22): 4250 https://doi.org/10.1103/PhysRevLett.76.4250
30
Carpene E., Mancini E., Dallera C., Brenna M., Puppin E., De Silvestri S.. Dynamics of electron‒magnon interaction and ultrafast demagnetization in thin iron films. Phys. Rev. B, 2008, 78(17): 174422 https://doi.org/10.1103/PhysRevB.78.174422
31
Fähnle M., Ultrafast demagnetization after femtosecond laser pulses: A complex interaction of light with quantum matter, in: Spintronics XI, Vol. 10732 (SPIE, 2018), p. 107322G
32
Dornes C., Acremann Y., Savoini M., Kubli M., J. Neugebauer M., Abreu E., Huber L., Lantz G., A. Vaz C., Lemke H., M. Bothschafter E., Porer M., Esposito V., Rettig L., Buzzi M., Alberca A., W. Windsor Y., Beaud P., Staub U., Zhu D., Song S., M. Glownia J., L. Johnson S.. The ultrafast Einstein‒de Haas effect. Nature, 2019, 565(7738): 209 https://doi.org/10.1038/s41586-018-0822-7
33
D. Landau L., The Classical Theory of Fields, Vol. 2, Elsevier, 2013
N. Reddy J., Theory and Analysis of Elastic Plates and Shells, CRC press, 2006
36
D. Landau L.M. Lifšic E.M. Lifshitz E.M. Kosevich A.P. Pitaevskii L., Theory of Elasticity: Volume 7, Vol. 7, Elsevier, 1986
37
I. Lurie A., Theory of Elasticity, Springer Science & Business Media, 2010
38
M. Wysin G., Magnetic Excitations and Geometric Confinement, IOP Publishing, 2015, pp 2053‒2563
39
Courant R., Friedrichs K., Lewy H.. On the partial difference equations of mathematical physics. IBM J. Res. Develop., 1967, 11(2): 215 https://doi.org/10.1147/rd.112.0215
40
Abe K.Higashimori N.Kubo M.Fujiwara H.Iso Y., A remark on the Courant‒Friedrichs‒Lewy condition in finite difference approach to pde’s, Adv. Appl. Math. Mech. 6(5), 693 (2014)
Koopmans B., J. M. Ruigrok J., D. Longa F., J. M. de Jonge W.. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett., 2005, 95(26): 267207 https://doi.org/10.1103/PhysRevLett.95.267207
43
Chudo H., Ono M., Harii K., Matsuo M., Ieda J., Haruki R., Okayasu S., Maekawa S., Yasuoka H., Saitoh E.. Observation of Barnett fields in solids by nuclear magnetic resonance. Appl. Phys. Express, 2014, 7(6): 063004 https://doi.org/10.7567/APEX.7.063004
44
Chudo H., Harii K., Matsuo M., Ieda J., Ono M., Maekawa S., Saitoh E.. Rotational Doppler effect and Barnett field in spinning NMR. J. Phys. Soc. Jpn., 2015, 84(4): 043601 https://doi.org/10.7566/JPSJ.84.043601
45
Ono M., Chudo H., Harii K., Okayasu S., Matsuo M., Ieda J., Takahashi R., Maekawa S., Saitoh E.. Barnett effect in paramagnetic states. Phys. Rev. B, 2015, 92(17): 174424 https://doi.org/10.1103/PhysRevB.92.174424
Xu J., A. Li B., Q. Shen W., Xia Y.. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions. Front. Phys., 2015, 10(6): 102501 https://doi.org/10.1007/s11467-015-0479-8
J. Liu R., Xu J.. Revisiting angular momentum conservation in transport simulations of intermediate-energy heavy-ion collisions. Universe, 2023, 9(1): 36 https://doi.org/10.3390/universe9010036
50
Takahashi R., Matsuo M., Ono M., Harii K., Chudo H., Okayasu S., Ieda J., Takahashi S., Maekawa S., Saitoh E.. Spin hydrodynamic generation. Nat. Phys., 2016, 12(1): 52 https://doi.org/10.1038/nphys3526
Li J., Feng J., Wang P., Kan E., Xiang H.. Nature of spin‒lattice coupling in two-dimensional CrI3 and CrGeTe3. Sci. China Phys. Mech. Astron., 2021, 64(8): 286811 https://doi.org/10.1007/s11433-021-1717-9
53
Hellsvik J., Thonig D., Modin K., Iuşan D., Bergman A., Eriksson O., Bergqvist L., Delin A.. General method for atomistic spin‒lattice dynamics with first-principles accuracy. Phys. Rev. B, 2019, 99(10): 104302 https://doi.org/10.1103/PhysRevB.99.104302
54
Sadhukhan B., Bergman A., O. Kvashnin Y., Hellsvik J., Delin A.. Spin‒lattice couplings in two-dimensional CrI3 from first-principles computations. Phys. Rev. B, 2022, 105(10): 104418 https://doi.org/10.1103/PhysRevB.105.104418
55
Z. Lu X., Wu X., J. Xiang H.. General microscopic model of magnetoelastic coupling from first principles. Phys. Rev. B, 2015, 91(10): 100405 https://doi.org/10.1103/PhysRevB.91.100405
Matsuo M., Ieda J., Harii K., Saitoh E., Maekawa S.. Mechanical generation of spin current by spin‒rotation coupling. Phys. Rev. B, 2013, 87(18): 180402 https://doi.org/10.1103/PhysRevB.87.180402
59
Ieda J.Matsuo M.Maekawa S., Theory of mechanical spin current generation via spin–rotation coupling, Solid State Commun. 198, 52 (2014) (sI: Spin Mechanics)