Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (5): 51202   https://doi.org/10.1007/s11467-024-1391-x
  本期目录
Hardware-efficient quantum principal component analysis for medical image recognition
Zidong Lin1, Hongfeng Liu1, Kai Tang1, Yidai Liu2, Liangyu Che1, Xinyue Long1, Xiangyu Wang1, Yu-ang Fan1, Keyi Huang1, Xiaodong Yang1,3,4, Tao Xin1,3,4, Xinfang Nie1,4,5(), Dawei Lu1,3,4,5()
1. Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
2. Department of Physics, Hong Kong University of Science and Technology, ClearWaterBay, Kowloon, Hong Kong, China
3. International Quantum Academy, Shenzhen 518055, China
4. Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
5. Quantum Science Center of Guangdong–HongKong–Macao Greater Bay Area, Shenzhen–HongKong International Science and Technology Park, No. 3 Binlang Road, Futian District, Shenzhen 518045, China
 全文: PDF(5917 KB)   HTML
Abstract

Principal component analysis (PCA) is a widely used tool in machine learning algorithms, but it can be computationally expensive. In 2014, Lloyd, Mohseni & Rebentrost proposed a quantum PCA (qPCA) algorithm [Nat. Phys. 10, 631 (2014)] that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations. In this study, we presented a hardware-efficient approach for qPCA, utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance (NMR) quantum processor. Additionally, we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors (principal components). As an important application of PCA, we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system. Our experiment highlights the potential of near-term quantum devices to accelerate qPCA, opening up new avenues for practical applications of quantum machine learning algorithms.

Key wordsquantum simulation    quantum principal component analysis    nuclear magnetic resonance
收稿日期: 2023-11-02      出版日期: 2024-05-30
Corresponding Author(s): Xinfang Nie,Dawei Lu   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(5): 51202.
Zidong Lin, Hongfeng Liu, Kai Tang, Yidai Liu, Liangyu Che, Xinyue Long, Xiangyu Wang, Yu-ang Fan, Keyi Huang, Xiaodong Yang, Tao Xin, Xinfang Nie, Dawei Lu. Hardware-efficient quantum principal component analysis for medical image recognition. Front. Phys. , 2024, 19(5): 51202.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-024-1391-x
https://academic.hep.com.cn/fop/CN/Y2024/V19/I5/51202
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
  
1 M. Mitchell T., Machine Learning, Vol. 1, New York: McGraw-Hill, 1997
2 I. Jordan M., M. Mitchell T.. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255
https://doi.org/10.1126/science.aaa8415
3 Carleo G., Cirac I., Cranmer K., Daudet L., Schuld M., Tishby N., Vogt-Maranto L., Zdeborová L.. Machine learning and the physical sciences. Rev. Mod. Phys., 2019, 91(4): 045002
https://doi.org/10.1103/RevModPhys.91.045002
4 J. Erickson B., Korfiatis P., Akkus Z., L. Kline T.. Machine learning for medical imaging. Radiographics, 2017, 37(2): 505
https://doi.org/10.1148/rg.2017160130
5 L. Giger M.. Machine learning in medical imaging. J. Am. Coll. Radiol., 2018, 15(3): 512
https://doi.org/10.1016/j.jacr.2017.12.028
6 Wang S., Li C., Wang R., Liu Z., Wang M., Tan H., Wu Y., Liu X., Sun H., Yang R., Liu X., Chen J., Zhou H., Ben Ayed I., Zheng H.. Annotation-efficient deep learning for automatic medical image segmentation. Nat. Commun., 2021, 12(1): 5915
https://doi.org/10.1038/s41467-021-26216-9
7 C. Chiu Y., Zheng S., J. Wang L., S. Iskra B., K. Rao M., J. Houghton P., Huang Y., Chen Y.. Predicting and characterizing a cancer dependency map of tumors with deep learning. Sci. Adv., 2021, 7(34): eabh1275
https://doi.org/10.1126/sciadv.abh1275
8 Witowski J., Heacock L., Reig B., K. Kang S., Lewin A., Pysarenko K., Patel S., Samreen N., Rudnicki W., Łuczyńska E., Popiela T., Moy L., J. Geras K.. Improving breast cancer diagnostics with deep learning for MRI. Sci. Transl. Med., 2022, 14(664): eabo4802
https://doi.org/10.1126/scitranslmed.abo4802
9 M. Thomasian N., R. Kamel I., X. Bai H.. Machine intelligence in non-invasive endocrine cancer diagnostics. Nat. Rev. Endocrinol., 2022, 18(2): 81
https://doi.org/10.1038/s41574-021-00543-9
10 J. Schoepf U., C. Schneider A., Das M., A. Wood S., I. Cheema J., Costello P.. Pulmonary embolism: Computer-aided detection at multidetector row spiral computed tomography. J. Thorac. Imaging, 2007, 22(4): 319
https://doi.org/10.1097/RTI.0b013e31815842a9
11 M. Dundar M., Fung G., Krishnapuram B., B. Rao R.. Multiple-instance learning algorithms for computer-aided detection. IEEE Trans. Biomed. Eng., 2008, 55(3): 1015
https://doi.org/10.1109/TBME.2007.909544
12 P. Chan H., C. B. Lo S., Sahiner B., L. Lam K., A. Helvie M.. Computer‐aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network. Med. Phys., 1995, 22(10): 1555
https://doi.org/10.1118/1.597428
13 Bauer S., Wiest R., P. Nolte L., Reyes M.. A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol., 2013, 58(13): R97
https://doi.org/10.1088/0031-9155/58/13/R97
14 M. Mitchell T., V. Shinkareva S., Carlson A., M. Chang K., L. Malave V., A. Mason R., A. Just M.. Predicting human brain activity associated with the meanings of nouns. Science, 2008, 320(5880): 1191
https://doi.org/10.1126/science.1152876
15 Davatzikos C., Fan Y., Wu X., Shen D., M. Resnick S.. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol. Aging, 2008, 29(4): 514
https://doi.org/10.1016/j.neurobiolaging.2006.11.010
16 Kim D., Burge J., Lane T., D. Pearlson G., A. Kiehl K., D. Calhoun V.. Hybrid ICA–Bayesian network approach reveals distinct effective connectivity differences in schizophrenia. Neuroimage, 2008, 42(4): 1560
https://doi.org/10.1016/j.neuroimage.2008.05.065
17 Ning W., Lei S., Yang J., Cao Y., Jiang P., Yang Q., Zhang J., Wang X., Chen F., Geng Z., Xiong L., Zhou H., Guo Y., Zeng Y., Shi H., Wang L., Xue Y., Wang Z.. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4(12): 1197
https://doi.org/10.1038/s41551-020-00633-5
18 J. Rodriguez-Morales A., A. Cardona-Ospina J., Guti’errez-Ocampo E., Villamizar-Penã R., Holguin-Rivera Y., P. Escalera-Antezana J., E. Alvarado-Arnez L., K. Bonilla-Aldana D., Franco-Paredes C., F. Henao-Martinez A., Paniz-Mondolfi A., J. Lagos-Grisales G., Ramírez-Vallejo E., A. Suárez J., I. Zambrano L., E. Villamil-Gómez W., J. Balbin-Ramon G., A. Rabaan A., Harapan H., Dhama K., Nishiura H., Kataoka H., Ahmad T., Sah R.. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis., 2020, 34: 101623
https://doi.org/10.1016/j.tmaid.2020.101623
19 Shi H., Han X., Jiang N., Cao Y., Alwalid O., Gu J., Fan Y., Zheng C.. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect. Dis., 2020, 20(4): 425
https://doi.org/10.1016/S1473-3099(20)30086-4
20 C. Liu K., Xu P., F. Lv W., H. Qiu X., L. Yao J., F. Gu J., Wei W.. CT manifestations of coronavirus disease-2019: A retrospective analysis of 73 cases by disease severity. Eur. J. Radiol., 2020, 126: 108941
https://doi.org/10.1016/j.ejrad.2020.108941
21 P. M. Schuld F., Sinayskiy I., Petruccione F.. An introduction to quantum machine learning. Contemp. Phys., 2015, 56(2): 172
https://doi.org/10.1080/00107514.2014.964942
22 Biamonte J., Wittek P., Pancotti N., Rebentrost P., Wiebe N., Lloyd S.. Quantum machine learning. Nature, 2017, 549(7671): 195
https://doi.org/10.1038/nature23474
23 Ciliberto C., Herbster M., D. Ialongo A., Pontil M., Rocchetto A., Severini S., Wossnig L.. Quantum machine learning: A classical perspective. Proc. Royal Soc. A, 2018, 474(2209): 20170551
https://doi.org/10.1098/rspa.2017.0551
24 Rebentrost P., Mohseni M., Lloyd S.. Quantum support vector machine for big data classification. Phys. Rev. Lett., 2014, 113(13): 130503
https://doi.org/10.1103/PhysRevLett.113.130503
25 Li Z., Liu X., Xu N., Du J.. Experimental realization of a quantum support vector machine. Phys. Rev. Lett., 2015, 114(14): 140504
https://doi.org/10.1103/PhysRevLett.114.140504
26 Kerenidis I., Prakash A., Szilágyi D.. Quantum algorithms for second-order cone programming and support vector machines. Quantum, 2021, 5: 427
https://doi.org/10.22331/q-2021-04-08-427
27 L. Dallaire-Demers P., Killoran N.. Quantum generative adversarial networks. Phys. Rev. A, 2018, 98(1): 012324
https://doi.org/10.1103/PhysRevA.98.012324
28 Zoufal C., Lucchi A., Woerner S.. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Inf., 2019, 5: 103
https://doi.org/10.1038/s41534-019-0223-2
29 L. Huang H., Du Y., Gong M., Zhao Y., Wu Y., Wang C., Li S., Liang F., Lin J., Xu Y., Yang R., Liu T., H. Hsieh M., Deng H., Rong H., Z. Peng C., Y. Lu C., A. Chen Y., Tao D., Zhu X., W. Pan J.. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl., 2021, 16(2): 024051
https://doi.org/10.1103/PhysRevApplied.16.024051
30 W. Harrow A., Hassidim A., Lloyd S.. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
https://doi.org/10.1103/PhysRevLett.103.150502
31 Pan J., Cao Y., Yao X., Li Z., Ju C., Chen H., Peng X., Kais S., Du J.. Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A, 2014, 89(2): 022313
https://doi.org/10.1103/PhysRevA.89.022313
32 W. Berry D.. High-order quantum algorithm for solving linear differential equations. J. Phys. A Math. Theor., 2014, 47(10): 105301
https://doi.org/10.1088/1751-8113/47/10/105301
33 W. Berry D., M. Childs A., Ostrander A., Wang G.. Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys., 2017, 356(3): 1057
https://doi.org/10.1007/s00220-017-3002-y
34 Xin T., Wei S., Cui J., Xiao J., Arrazola I., Lamata L., Kong X., Lu D., Solano E., Long G.. Quantum algorithm for solving linear differential equations: Theory and experiment. Phys. Rev. A, 2020, 101(3): 032307
https://doi.org/10.1103/PhysRevA.101.032307
35 Carleo G., Troyer M.. Solving the quantum many-body problem with artificial neural networks. Science, 2017, 355(6325): 602
https://doi.org/10.1126/science.aag2302
36 Hu L., H. Wu S., Cai W., Ma Y., Mu X., Xu Y., Wang H., Song Y., L. Deng D., L. Zou C., Sun L.. Quantum generative adversarial learning in a superconducting quantum circuit. Sci. Adv., 2019, 5(1): eaav2761
https://doi.org/10.1126/sciadv.aav2761
37 Liu Y., Arunachalam S., Temme K.. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys., 2021, 17(9): 1013
https://doi.org/10.1038/s41567-021-01287-z
38 Lloyd S., Mohseni M., Rebentrost P.. Quantum principal component analysis. Nat. Phys., 2014, 10(9): 631
https://doi.org/10.1038/nphys3029
39 Xin T., Che L., Xi C., Singh A., Nie X., Li J., Dong Y., Lu D.. Experimental quantum principal component analysis via parametrized quantum circuits. Phys. Rev. Lett., 2021, 126(11): 110502
https://doi.org/10.1103/PhysRevLett.126.110502
40 Li Z., Chai Z., Guo Y., Ji W., Wang M., Shi F., Wang Y., Lloyd S., Du J.. Resonant quantum principal component analysis. Sci. Adv., 2021, 7(34): eabg2589
https://doi.org/10.1126/sciadv.abg2589
41 Li Z., Zhou H., Ju C., Chen H., Zheng W., Lu D., Rong X., Duan C., Peng X., Du J.. Experimental realization of a compressed quantum simulation of a 32-spin Ising chain. Phys. Rev. Lett., 2014, 112(22): 220501
https://doi.org/10.1103/PhysRevLett.112.220501
42 Li Z., Liu X., Wang H., Ashhab S., Cui J., Chen H., Peng I., Du J.. Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett., 2019, 122(9): 090504
https://doi.org/10.1103/PhysRevLett.122.090504
43 Kjaergaard M., E. Schwartz M., Greene A., O. Samach G., Bengtsson A., O’Keeffe M., M. McNally C., Braumüller J., K. Kim D., Krantz P., Marvian M., Melville A., M. Niedzielski B., Sung Y., Winik R., Yoder J., Rosenberg D., Obenland K., Lloyd S., P. Orlando T., Marvian I., Gustavsson S., D. Oliver W.. Demonstration of density matrix exponentiation using a superconducting quantum processor. Phys. Rev. X, 2022, 12(1): 011005
https://doi.org/10.1103/PhysRevX.12.011005
44 Pal S., Nishad N., S. Mahesh T., J. Sreejith G.. Temporal order in periodically driven spins in star-shaped clusters. Phys. Rev. Lett., 2018, 120(18): 180602
https://doi.org/10.1103/PhysRevLett.120.180602
45 Micadei K., P. S. Peterson J., M. Souza A., S. Sarthour R., S. Oliveira I., T. Landi G., M. Serra R., Lutz E.. Experimental validation of fully quantum fluctuation theorems using dynamic Bayesian networks. Phys. Rev. Lett., 2021, 127(18): 180603
https://doi.org/10.1103/PhysRevLett.127.180603
46 J. de Assis R., M. de Mendonça T., J. Villas-Boas C., M. de Souza A., S. Sarthour R., S. Oliveira I., G. de Almeida N.. Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett., 2019, 122(24): 240602
https://doi.org/10.1103/PhysRevLett.122.240602
47 Zhang Z., Long X., Zhao X., Lin Z., Tang K., Liu H., Yang X., Nie X., Wu J., Li J., Xin T., Li K., Lu D.. Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit. Phys. Rev. A, 2022, 105(3): L030402
https://doi.org/10.1103/PhysRevA.105.L030402
48 Miquel C., P. Paz J., Saraceno M., Knill E., Laflamme R., Negrevergne C.. Interpretation of tomography and spectroscopy as dual forms of quantum computation. Nature, 2002, 418(6893): 59
https://doi.org/10.1038/nature00801
49 Li Z., H. Yung M., Chen H., Lu D., D. Whitfield J., Peng X., Aspuru-Guzik A., Du J.. Solving quantum ground-state problems with nuclear magnetic resonance. Sci. Rep., 2011, 1: 88
https://doi.org/10.1038/srep00088
50 B. Batalhão T., M. Souza A., S. Sarthour R., S. Oliveira I., Paternostro M., Lutz E., M. Serra R.. Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett., 2015, 115(19): 190601
https://doi.org/10.1103/PhysRevLett.115.190601
51 B. Batalhão T., M. Souza A., Mazzola L., Auccaise R., S. Sarthour R., S. Oliveira I., Goold J., De Chiara G., Paternostro M., M. Serra R.. Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett., 2014, 113(14): 140601
https://doi.org/10.1103/PhysRevLett.113.140601
52 Giovannetti V., Lloyd S., Maccone L.. Quantum random access memory. Phys. Rev. Lett., 2008, 100(16): 160501
https://doi.org/10.1103/PhysRevLett.100.160501
53 Ning W., Lei S., Yang J., Cao Y., Jiang P., Yang Q., Zhang J., Wang X., Chen F., Geng Z., Xiong J., Zhou H., Guo K., Zeng Y., Chi H., Wang L., Xue Y., Wang Z.. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4: 1197
https://doi.org/10.1038/s41551-020-00633-5
54 A. Turk M.P. Pentland A., in: Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 1991, pp 586–587
55 Li J., Lu D., Luo Z., Laflamme R., Peng X., Du J.. Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering. Phys. Rev. A, 2016, 94(1): 012312
https://doi.org/10.1103/PhysRevA.94.012312
56 Nie X., Zhu X., Huang K., Tang K., Long X., Lin Z., Tian Y., Qiu C., Xi C., Yang X., Li J., Dong Y., Xin T., Lu D.. Experimental realization of a quantum refrigerator driven by indefinite causal orders. Phys. Rev. Lett., 2022, 129(10): 100603
https://doi.org/10.1103/PhysRevLett.129.100603
57 Xin T., Li Y., A. Fan Y., Zhu X., Zhang Y., Nie X., Li J., Liu Q., Lu D.. Quantum phases of three-dimensional chiral topological insulators on a spin quantum simulator. Phys. Rev. Lett., 2020, 125(9): 090502
https://doi.org/10.1103/PhysRevLett.125.090502
58 Micadei K., P. Peterson J., M. Souza A., S. Sarthour R., S. Oliveira I., T. Landi G., B. Batalhão T., M. Serra R., Lutz E.. Reversing the direction of heat flow using quantum correlations. Nat. Commun., 2019, 10(1): 2456
https://doi.org/10.1038/s41467-019-10333-7
59 J. Glaser S., Boscain U., Calarco T., P. Koch C., Köckenberger W., Kosloff R., Kuprov I., Luy B., Schirmer S., Schulte-Herbrüggen T., Sugny D., K. Wilhelm F.. Training Schrödinger’s cat: Quantum optimal control. Eur. Phys. J. D, 2015, 69(12): 279
https://doi.org/10.1140/epjd/e2015-60464-1
60 de Fouquieres P., G. Schirmer S., J. Glaser S., Kuprov I.. Second order gradient ascent pulse engineering. J. Magn. Reson., 2011, 212(2): 412
https://doi.org/10.1016/j.jmr.2011.07.023
61 E. Hinton G., R. Salakhutdinov R.. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504
https://doi.org/10.1126/science.1127647
62 Abdi H., J. Williams L.. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat., 2010, 2(4): 433
https://doi.org/10.1002/wics.101
63 Li J., Yang X., Peng X., P. Sun C.. Hybrid quantum−classical approach to quantum optimal control. Phys. Rev. Lett., 2017, 118(15): 150503
https://doi.org/10.1103/PhysRevLett.118.150503
64 Lu D., Li K., Li J., Katiyar H., J. Park A., Feng G., Xin T., Li H., Long G., Brodutch A., Baugh J., Zeng B., Laflamme R.. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inf., 2017, 3: 45
https://doi.org/10.1038/s41534-017-0045-z
65 T. Flammia S., K. Liu Y.. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett., 2011, 106(23): 230501
https://doi.org/10.1103/PhysRevLett.106.230501
66 P. da Silva M., Landon-Cardinal O., Poulin D.. Practical characterization of quantum devices without tomography. Phys. Rev. Lett., 2011, 107(21): 210404
https://doi.org/10.1103/PhysRevLett.107.210404
67 Lloyd S.. Universal quantum simulators. Science, 1996, 273(5278): 1073
https://doi.org/10.1126/science.273.5278.1073
68 A. Gershenfeld N., L. Chuang I.. Bulk spin-resonance quantum computation. Science, 1997, 275(5298): 350
https://doi.org/10.1126/science.275.5298.350
69 Lu D., Li H., A. Trottier D., Li J., Brodutch A., P. Krismanich A., Ghavami A., I. Dmitrienko G., Long G., Baugh J., Laflamme R.. Experimental estimation of average fidelity of a clifford gate on a 7-qubit quantum processor. Phys. Rev. Lett., 2015, 114(14): 140505
https://doi.org/10.1103/PhysRevLett.114.140505
70 Feng G., H. Cho F., Katiyar H., Li J., Lu D., Baugh J., Laflamme R.. Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system. Phys. Rev. A, 2018, 98(5): 052341
https://doi.org/10.1103/PhysRevA.98.052341
71 Xin T., Nie X., Kong X., Wen J., Lu D., Li J.. Quantum pure state tomography via variational hybrid quantum-classical method. Phys. Rev. Appl., 2020, 13(2): 024013
https://doi.org/10.1103/PhysRevApplied.13.024013
[1] fop-24391-of-ludawei_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed