Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (5): 53601   https://doi.org/10.1007/s11467-024-1394-7
  本期目录
Deep learning in two-dimensional materials: Characterization, prediction, and design
Xinqin Meng1, Chengbing Qin1,2(), Xilong Liang3, Guofeng Zhang1, Ruiyun Chen1, Jianyong Hu1, Zhichun Yang1, Jianzhong Huo3, Liantuan Xiao1,2(), Suotang Jia1
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
2. College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
3. Taiyuan Central Hospital of Shanxi Medical University, Taiyuan 030009, China
 全文: PDF(18419 KB)   HTML
Abstract

Since the isolation of graphene, two-dimensional (2D) materials have attracted increasing interest because of their excellent chemical and physical properties, as well as promising applications. Nonetheless, particular challenges persist in their further development, particularly in the effective identification of diverse 2D materials, the domains of large-scale and high-precision characterization, also intelligent function prediction and design. These issues are mainly solved by computational techniques, such as density function theory and molecular dynamic simulation, which require powerful computational resources and high time consumption. The booming deep learning methods in recent years offer innovative insights and tools to address these challenges. This review comprehensively outlines the current progress of deep learning within the realm of 2D materials. Firstly, we will briefly introduce the basic concepts of deep learning and commonly used architectures, including convolutional neural and generative adversarial networks, as well as U-net models. Then, the characterization of 2D materials by deep learning methods will be discussed, including defects and materials identification, as well as automatic thickness characterization. Thirdly, the research progress for predicting the unique properties of 2D materials, involving electronic, mechanical, and thermodynamic features, will be evaluated succinctly. Lately, the current works on the inverse design of functional 2D materials will be presented. At last, we will look forward to the application prospects and opportunities of deep learning in other aspects of 2D materials. This review may offer some guidance to boost the understanding and employing novel 2D materials.

Key wordsdeep learning    two-dimensional materials    materials identification    thickness characterization    prediction    inverse design    convolutional neural networks    generative adversarial networks
收稿日期: 2023-12-15      出版日期: 2024-04-15
Corresponding Author(s): Chengbing Qin,Liantuan Xiao   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(5): 53601.
Xinqin Meng, Chengbing Qin, Xilong Liang, Guofeng Zhang, Ruiyun Chen, Jianyong Hu, Zhichun Yang, Jianzhong Huo, Liantuan Xiao, Suotang Jia. Deep learning in two-dimensional materials: Characterization, prediction, and design. Front. Phys. , 2024, 19(5): 53601.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-024-1394-7
https://academic.hep.com.cn/fop/CN/Y2024/V19/I5/53601
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Research area2D materialsModelData sourcesApplicationsRef.
Structure characterizationgraphene, Mo1–xWxSe2FCNsimulated imagesdefects identification[121]
graphene, metallic nanoparticlesCNNsimulated images using multislice algorithmrecognition and classification of atomic structures[122]
Mo-doped WS2CNN with encoder–decoder structureexperimental STEM imagesdefects identification[123]
2H-MoTe2CNNsimulated STEM imagespoint defects identification[124]
TMDsCNN, U-netsimulated ADF STEM images using multislice algorithmquantification of dopants and defects[125]
WSe2–2xTe2xFCNsimulated images using Computemlocalization and classification of point defects[126]
Ti3C2TxFCNsimulated images and experimental STEM imagesdefects and atoms identification[127]
SegNetOM imagesmaterials identification[128]
graphene, MoS2U-netOM imagesthickness characterization[129]
13 typical 2D materials2DMOINet model based on encoder–decoder structureOM imagesmaterials identification and thickness characterization[130]
graphene, h-BN, MoS2, WTe2Mask-RCNNOM imagesmaterials identification and thickness characterization[131]
grapheneDeep-CNNOM imagesmaterials identification and thickness characterization[133]
graphene, MoS2U2-netOM images from [129]thickness characterization[134]
MoS2GAN, U-netOM imagesdeblurring and thickness characterization[137]
WS2, h-BN, MoS2, MoTe2, WSe2, BSCCO, MoSe2, grapheneANNOM images (RGB/HSV)materials identification, thickness characterization and identification defect concentrations[138]
MoS2GAN, U-netmultispectral imagesdeblurring and thickness characterization[139]
Properties predictionhybrid graphene-h-BNANNDFT calculationbandgap[140]
hybrid graphene-h-BNCNNDFT calculationbandgap[141]
defected graphene, MoS2CNNDFT calculationformation energy[143]
defected grapheneANN, CNNMD simulationfracture stress[144]
grapheneConvLSTM networkMD simulationfracture path[146]
polycrystalline grapheneCNN, Bi-RNNMD simulationfracture path[149]
polycrystalline grapheneDeep-CNNMD simulationYoung’s modulus and fracture stress[153]
h-BNDeep-CNNMD simulationYoung’s modulus and tensile strength[154]
graphene, h-BNANNMD simulationinterfacial thermal resistance[155]
porous grapheneCNNMD simulationthermal conductivity[156]
mechanically stretched grapheneDNNMD simulationthermal conductivity[157]
Material designhybrids graphene/h-BNGANDFT calculationgenerate graphene/h-BN hybrids with specific bandgap[169]
MoS2INNDFT calculationgenerate MoS2 with specific bandgap[170]
porous grapheneCNNMD simulationfind porous graphene with low thermal conductivity[156]
2D material catalystsCGCNNDFT calculationfind high-performance hydrogen evolution reaction catalysts[171]
Tab.1  
1 S. Novoselov K. , K. Geim A. , V. Morozov S. , Jiang D. , Zhang Y. , V. Dubonos S. , V. Grigorieva I. , A. Firsov A. . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
2 Ma Q. , Ren G. , Xu K. , Z. Ou J. . Tunable optical properties of 2D materials and their applications. Adv. Opt. Mater., 2021, 9(2): 2001313
https://doi.org/10.1002/adom.202001313
3 L. Li X. , P. Han W. , B. Wu J. , F. Qiao X. , Zhang J. , H. Tan P. . Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv. Funct. Mater., 2017, 27(19): 1604468
https://doi.org/10.1002/adfm.201604468
4 Low T. , Chaves A. , D. Caldwell J. , Kumar A. , X. Fang N. , Avouris P. , F. Heinz T. , Guinea F. , Martin-Moreno L. , Koppens F. . Polaritons in layered two-dimensional materials. Nat. Mater., 2017, 16(2): 182
https://doi.org/10.1038/nmat4792
5 Qin Y. , Sayyad M. , R. P. Montblanch A. , S. G. Feuer M. , Dey D. , Blei M. , Sailus R. , M. Kara D. , Shen Y. , Yang S. , S. Botana A. , Atature M. , Tongay S. . Reaching the excitonic limit in 2D Janus monolayers by in situ deterministic growth. Adv. Mater., 2022, 34(6): 2106222
https://doi.org/10.1002/adma.202106222
6 LaMountain T. , J. Lenferink E. , J. Chen Y. , K. Stanev T. , P. Stern N. . Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys., 2018, 13(4): 138114
https://doi.org/10.1007/s11467-018-0795-x
7 Liu Y. , Xiao C. , Li Z. , Xie Y. . Vacancy engineering for tuning electron and phonon structures of two-dimensional materials. Adv. Energy Mater., 2016, 6(23): 1600436
https://doi.org/10.1002/aenm.201600436
8 Kuc A. , Heine T. , Kis A. . Electronic properties of transition-metal dichalcogenides. MRS Bull., 2015, 40(7): 577
https://doi.org/10.1557/mrs.2015.143
9 H. Wang Q. , Kalantar-Zadeh K. , Kis A. , N. Coleman J. , S. Strano M. . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
https://doi.org/10.1038/nnano.2012.193
10 Q. Fang Y.K. Wang F.Q. Wang R.Zhai T.Huang F., 2D NbOI2: A chiral semiconductor with highly in-plane anisotropic electrical and optical properties, Adv. Mater. 33(29), 2101505 (2021)
11 Yang R. , Fan J. , Sun M. . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
https://doi.org/10.1007/s11467-022-1176-z
12 Song H. , Liu J. , Liu B. , Wu J. , M. Cheng H. , Kang F. . Two-dimensional materials for thermal management applications. Joule, 2018, 2(3): 442
https://doi.org/10.1016/j.joule.2018.01.006
13 Wang Y. , Xu N. , Li D. , Zhu J. . Thermal properties of two dimensional layered materials. Adv. Funct. Mater., 2017, 27(19): 1604134
https://doi.org/10.1002/adfm.201604134
14 Thiel L. , Wang Z. , A. Tschudin M. , Rohner D. , Gutiérrez-Lezama I. , Ubrig N. , Gibertini M. , Giannini E. , F. Morpurgo A. , Maletinsky P. . Probing magnetism in 2D materials at the nanoscale with single-spin microscopy. Science, 2019, 364(6444): 973
https://doi.org/10.1126/science.aav6926
15 Li Y. , Yang B. , Xu S. , Huang B. , Duan W. . Emergent phenomena in magnetic two-dimensional materials and van der Waals heterostructures. ACS Appl. Electron. Mater., 2022, 4(7): 3278
https://doi.org/10.1021/acsaelm.2c00419
16 Gibertini M. , Koperski M. , F. Morpurgo A. , S. Novoselov K. . Magnetic 2D materials and heterostructures. Nat. Nanotechnol., 2019, 14(5): 408
https://doi.org/10.1038/s41565-019-0438-6
17 Li X. , Sun M. , Shan C. , Chen Q. , Wei X. . Mechanical properties of 2D materials studied by in situ microscopy techniques. Adv. Mater. Interfaces, 2018, 5(5): 1701246
https://doi.org/10.1002/admi.201701246
18 Jiang H. , Zheng L. , Liu Z. , Wang X. . Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat, 2020, 2(6): 1077
https://doi.org/10.1002/inf2.12072
19 Fang C. , Wang H. , Shen Z. , Shen H. , Wang S. , Ma J. , Wang J. , Luo H. , Li D. . High-performance photodetectors based on lead-free 2D Ruddlesden–Popper perovskite/MoS2 heterostructures. ACS Appl. Mater. Interfaces, 2019, 11(8): 8419
https://doi.org/10.1021/acsami.8b20538
20 Liu H. , Zhu X. , Sun X. , Zhu C. , Huang W. , Zhang X. , Zheng B. , Zou Z. , Luo Z. , Wang X. , Li D. , Pan A. . Self-powered broad-band photodetectors based on vertically stacked WSe2/Bi2Te3 p–n heterojunctions. ACS Nano, 2019, 13(11): 13573
https://doi.org/10.1021/acsnano.9b07563
21 Long M. , Gao A. , Wang P. , Xia H. , Ott C. , Pan C. , Fu Y. , Liu E. , Chen X. , Lu W. , Nilges T. , Xu J. , Wang X. , Hu W. , Miao F. . Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv., 2017, 3(6): e1700589
https://doi.org/10.1126/sciadv.1700589
22 Das S. , Pandey D. , Thomas J. , Roy T. . The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1): 1802722
https://doi.org/10.1002/adma.201802722
23 Abnavi A. , Ahmadi R. , Ghanbari H. , Fawzy M. , Hasani A. , De Silva T. , M. Askar A. , R. Mohammadzadeh M. , Kabir F. , Whitwick M. , Beaudoin M. , K. O’Leary S. , M. Adachi M. . Flexible high-performance photovoltaic devices based on 2D MoS2 diodes with geometrically asymmetric contact areas. Adv. Funct. Mater., 2023, 33(7): 2210619
https://doi.org/10.1002/adfm.202210619
24 Sung J. , Shin D. , Cho H. , W. Lee S. , Park S. , D. Kim Y. , S. Moon J. , H. Kim J. , H. Gong S. . Room-temperature continuous-wave indirect-bandgap transition lasing in an ultra-thin WS2 disk. Nat. Photonics, 2022, 16(11): 792
https://doi.org/10.1038/s41566-022-01085-w
25 Li C. , Zhao L. , Shang Q. , Wang R. , Bai P. , Zhang J. , Gao Y. , Cao Q. , Wei Z. , Zhang Q. . Room-temperature near-infrared excitonic lasing from mechanically exfoliated InSe microflake. ACS Nano, 2022, 16(1): 1477
https://doi.org/10.1021/acsnano.1c09844
26 Gu J.Chakraborty B.Khatoniar M.M. Menon V., A room-temperature polariton light-emitting diode based on monolayer WS2, Nat. Nanotechnol. 14(11), 1024 (2019)
27 Zhao L. , Jiang Y. , Li C. , Liang Y. , Wei Z. , Wei X. , Zhang Q. . Probing anisotropic deformation and near-infrared emission tuning in thin-layered InSe crystal under high pressure. Nano Lett., 2023, 23(8): 3493
https://doi.org/10.1021/acs.nanolett.3c00593
28 Wang J. , J. Zhou Y. , Xiang D. , J. Ng S. , Watanabe K. , Taniguchi T. , Eda G. . Polarized light-emitting diodes based on anisotropic excitons in few-layer ReS2. Adv. Mater., 2020, 32(32): 2001890
https://doi.org/10.1002/adma.202001890
29 Jariwala D. , K. Sangwan V. , J. Lauhon L. , J. Marks T. , C. Hersam M. . Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano, 2014, 8(2): 1102
https://doi.org/10.1021/nn500064s
30 Fiori G. , Bonaccorso F. , Iannaccone G. , Palacios T. , Neumaier D. , Seabaugh A. , K. Banerjee S. , Colombo L. . Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10): 768
https://doi.org/10.1038/nnano.2014.207
31 Kaushal P. , Khanna G. . The role of two-dimensional materials for electronic devices. Mater. Sci. Semicond. Process., 2022, 143: 106546
https://doi.org/10.1016/j.mssp.2022.106546
32 Cheng R. , Jiang S. , Chen Y. , Liu Y. , Weiss N. , C. Cheng H. , Wu H. , Huang Y. , Duan X. . Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun., 2014, 5(1): 5143
https://doi.org/10.1038/ncomms6143
33 Choi M. , R. Bae S. , Hu L. , T. Hoang A. , Y. Kim S. , H. Ahn J. . Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS2 backplane. Sci. Adv., 2020, 6(28): eabb5898
https://doi.org/10.1126/sciadv.abb5898
34 Mukherjee B. , Hayakawa R. , Watanabe K. , Taniguchi T. , Nakaharai S. , Wakayama Y. . ReS2/h-BN/graphene heterostructure based multifunctional devices:Tunneling diodes, FETs, logic gates, and memory. Adv. Electron. Mater., 2021, 7(1): 2000925
https://doi.org/10.1002/aelm.202000925
35 Cheng M. , B. Yang J. , H. Li X. , Li H. , F. Du R. , P. Shi J. , He J. . Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
https://doi.org/10.1007/s11467-022-1190-1
36 Hu X. , Wang G. , Li J. , Huang J. , Liu Y. , Zhong G. , Yuan J. , Zhan H. , Wen Z. . Significant contribution of single atomic Mn implanted in carbon nanosheets to high-performance sodium–ion hybrid capacitors. Energy Environ. Sci., 2021, 14(8): 4564
https://doi.org/10.1039/D1EE00370D
37 Huang Z. , Hou H. , Zhang Y. , Wang C. , Qiu X. , Ji X. . Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater., 2017, 29(34): 1702372
https://doi.org/10.1002/adma.201702372
38 Lu X. , Shi Y. , Tang D. , Lu X. , Wang Z. , Sakai N. , Ebina Y. , Taniguchi T. , Ma R. , Sasaki T. , Yan C. . Accelerated ionic and charge transfer through atomic interfacial electric fields for superior sodium storage. ACS Nano, 2022, 16(3): 4775
https://doi.org/10.1021/acsnano.2c00089
39 Li X. , Li M. , Huang Z. , Liang G. , Chen Z. , Yang Q. , Huang Q. , Zhi C. . Activating the I0/I+ redox couple in an aqueous I2–Zn battery to achieve a high voltage plateau. Energy Environ. Sci., 2021, 14(1): 407
https://doi.org/10.1039/D0EE03086D
40 Zhang Y. , Cao J. , Yuan Z. , Zhao L. , Wang L. , Han W. . Assembling Co3O4 nanoparticles into MXene with enhanced electrochemical performance for advanced asymmetric supercapacitors. J. Colloid Interface Sci., 2021, 599: 109
https://doi.org/10.1016/j.jcis.2021.04.089
41 K. Kim Y. , Y. Shin K. . Functionalized phosphorene/polypyrrole hybrid nanomaterial by covalent bonding and its supercapacitor application. J. Ind. Eng. Chem., 2021, 94: 122
https://doi.org/10.1016/j.jiec.2020.10.044
42 Fu Q. , Meng Y. , Fang Z. , Hu Q. , Xu L. , Gao W. , Huang X. , Xue Q. , P. Sun Y. , Lu F. . Boron nitride nanosheet-anchored Pd–Fe core–shell nanoparticles as highly efficient catalysts for suzuki–miyaura coupling reactions. ACS Appl. Mater. Interfaces, 2017, 9(3): 2469
https://doi.org/10.1021/acsami.6b13570
43 H. Shin H. , Kang E. , Park H. , Han T. , H. Lee C. , K. Lim D. . Pd-nanodot decorated MoS2 nanosheets as a highly efficient photocatalyst for the visible-light-induced Suzuki–Miyaura coupling reaction. J. Mater. Chem. A, 2017, 5(47): 24965
https://doi.org/10.1039/C7TA08441B
44 Yao C. , Guo N. , Xi S. , Q. Xu C. , Liu W. , Zhao X. , Li J. , Fang H. , Su J. , Chen Z. , Yan H. , Qiu Z. , Lyu P. , Chen C. , Xu H. , Peng X. , Li X. , Liu B. , Su C. , J. Pennycook S. , J. Sun C. , Li J. , Zhang C. , Du Y. , Lu J. . Atomically-precise dopant-controlled single cluster catalysis for electrochemical nitrogen reduction. Nat. Commun., 2020, 11(1): 4389
https://doi.org/10.1038/s41467-020-18080-w
45 Luo Z. , Zhang H. , Yang Y. , Wang X. , Li Y. , Jin Z. , Jiang Z. , Liu C. , Xing W. , Ge J. . Reactant friendly hydrogen evolution interface based on di-anionic MoS2 surface. Nat. Commun., 2020, 11(1): 1116
https://doi.org/10.1038/s41467-020-14980-z
46 J. Li H. , Xi K. , Wang W. , Liu S. , R. Li G. , P. Gao X. . Quantitatively regulating defects of 2D tungsten selenide to enhance catalytic ability for polysulfide conversion in a lithium sulfur battery. Energy Storage Mater., 2022, 45: 1229
https://doi.org/10.1016/j.ensm.2021.11.024
47 Zhang G.Li G.Wang J.Tong H.Wang J.Du Y.Sun S.Dang F., 2D SnSe cathode catalyst featuring an efficient facet-dependent selective Li2O2 growth/decomposition for Li-oxygen batteries, Adv. Energy Mater. 12(21), 2103910 (2022)
48 Hou J. , Wang H. , Ge Z. , Zuo T. , Chen Q. , Liu X. , Mou S. , Fan C. , Xie Y. , Wang L. . Treating acute kidney injury with antioxidative black phosphorus nanosheets. Nano Lett., 2020, 20(2): 1447
https://doi.org/10.1021/acs.nanolett.9b05218
49 Chen W. , Ouyang J. , Yi X. , Xu Y. , Niu C. , Zhang W. , Wang L. , Sheng J. , Deng L. , N. Liu Y. , Guo S. . Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater., 2018, 30(3): 1703458
https://doi.org/10.1002/adma.201703458
50 Yim D. , E. Lee D. , So Y. , Choi C. , Son W. , Jang K. , S. Yang C. , H. Kim J. . Sustainable nanosheet antioxidants for sepsis therapy via scavenging intracellular reactive oxygen and nitrogen species. ACS Nano, 2020, 14(8): 10324
https://doi.org/10.1021/acsnano.0c03807
51 Feng W.Han X.Hu H.Chang M.Ding L.Xiang H.Chen Y.Li Y., 2D vanadium carbide MXenzyme to alleviate ROS-mediated inflammatory and neurodegenerative diseases, Nat. Commun. 12(1), 2203 (2021)
52 Li M. , Peng X. , Han Y. , Fan L. , Liu Z. , Guo Y. . Ti3C2 MXenes with intrinsic peroxidase-like activity for label-free and colorimetric sensing of proteins. Microchem. J., 2021, 166: 106238
https://doi.org/10.1016/j.microc.2021.106238
53 Rasool K. , Helal M. , Ali A. , E. Ren C. , Gogotsi Y. , A. Mahmoud K. . Antibacterial activity of Ti3C2Tx MXene. ACS Nano, 2016, 10(3): 3674
https://doi.org/10.1021/acsnano.6b00181
54 Arabi Shamsabadi A. , Sharifian Gh M. , Anasori B. , Soroush M. . Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets. ACS Sustain. Chem. & Eng., 2018, 6(12): 16586
https://doi.org/10.1021/acssuschemeng.8b03823
55 Sha R. , K. Bhattacharyya T. . MoS2-based nanosensors in biomedical and environmental monitoring applications. Electrochim. Acta, 2020, 349: 136370
https://doi.org/10.1016/j.electacta.2020.136370
56 K. Choi H. , Park J. , H. Gwon O. , Y. Kim J. , J. Kang S. , R. Byun H. , K. Shin B. , G. Jang S. , S. Kim H. , J. Yu Y. . Gate-tuned gas molecule sensitivity of a two-dimensional semiconductor. ACS Appl. Mater. Interfaces, 2022, 14(20): 23617
https://doi.org/10.1021/acsami.2c02380
57 P. Figerez S. , K. Tadi K. , R. Sahoo K. , Sharma R. , K. Biroju R. , Gigi A. , A. Anand K. , Kalita G. , N. Narayanan T. . Molybdenum disulfide–graphene van der Waals heterostructures as stable and sensitive electrochemical sensing platforms. Tungsten, 2020, 2(4): 411
https://doi.org/10.1007/s42864-020-00061-7
58 Madhuvilakku R. , Alagar S. , Mariappan R. , Piraman S. . Glassy carbon electrodes modified with reduced graphene oxide-MoS2-poly (3, 4-ethylene dioxythiophene) nanocomposites for the non-enzymatic detection of nitrite in water and milk. Anal. Chim. Acta, 2020, 1093: 93
https://doi.org/10.1016/j.aca.2019.09.043
59 Wu L. , Wang Q. , Ruan B. , Zhu J. , You Q. , Dai X. , Xiang Y. . High-performance lossy-mode resonance sensor based on few-layer black phosphorus. J. Phys. Chem. C, 2018, 122(13): 7368
https://doi.org/10.1021/acs.jpcc.7b12549
60 H. Huang C.T. Huang T.H. Chiang C.T. Huang W.T. Lin Y., A chemiresistive biosensor based on a layered graphene oxide/graphene composite for the sensitive and selective detection of circulating miRNA-21, Biosens. Bioelectron. 164, 112320 (2020)
61 Cui S. , Pu H. , A. Wells S. , Wen Z. , Mao S. , Chang J. , C. Hersam M. , Chen J. . Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nat. Commun., 2015, 6(1): 8632
https://doi.org/10.1038/ncomms9632
62 Liang Q. , Wang Q. , Zhang Q. , Wei J. , X. Lim S. , Zhu R. , Hu J. , Wei W. , Lee C. , H. Sow C. , Zhang W. , T. S. Wee A. . High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater., 2019, 31(24): 1807609
https://doi.org/10.1002/adma.201807609
63 Wang Y. , Li L. , Yao W. , Song S. , T. Sun J. , Pan J. , Ren X. , Li C. , Okunishi E. , Q. Wang Y. , Wang E. , Shao Y. , Y. Zhang Y. , Yang H. , F. Schwier E. , Iwasawa H. , Shimada K. , Taniguchi M. , Cheng Z. , Zhou S. , Du S. , J. Pennycook S. , T. Pantelides S. , J. Gao H. . Monolayer PtSe2, a new semiconducting transition-metal-dichalcogenide, epitaxially grown by direct selenization of Pt. Nano Lett., 2015, 15(6): 4013
https://doi.org/10.1021/acs.nanolett.5b00964
64 Yu X. , Yu P. , Wu D. , Singh B. , Zeng Q. , Lin H. , Zhou W. , Lin J. , Suenaga K. , Liu Z. , J. Wang Q. . Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun., 2018, 9(1): 1545
https://doi.org/10.1038/s41467-018-03935-0
65 D. Oyedele A. , Yang S. , Liang L. , A. Puretzky A. , Wang K. , Zhang J. , Yu P. , R. Pudasaini P. , W. Ghosh A. , Liu Z. , M. Rouleau C. , G. Sumpter B. , F. Chisholm M. , Zhou W. , D. Rack P. , B. Geohegan D. , Xiao K. . PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc., 2017, 139(40): 14090
https://doi.org/10.1021/jacs.7b04865
66 Gong Y. , Lin Z. , X. Chen Y. , Khan Q. , Wang C. , Zhang B. , Nie G. , Xie N. , Li D. . Two-dimensional platinum diselenide: Synthesis, emerging applications, and future challenges. Nano-Micro Lett., 2020, 12(1): 174
https://doi.org/10.1007/s40820-020-00515-0
67 Wang Y. , Li Y. , Chen Z. . Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS2 monolayer. J. Mater. Chem. C, 2015, 3(37): 9603
https://doi.org/10.1039/C5TC01345C
68 Ghorbani-Asl M.Kuc A.Miro P.Heine T., A single-material logical junction based on 2D crystal PdS2, Adv. Mater. 28(5), 853 (2016)
69 Zhao Y. , Qiao J. , Yu P. , Hu Z. , Lin Z. , P. Lau S. , Liu Z. , Ji W. , Chai Y. . Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater., 2016, 28(12): 2399
https://doi.org/10.1002/adma.201504572
70 Chia X. , Adriano A. , Lazar P. , Sofer Z. , Luxa J. , Pumera M. . Layered platinum dichalcogenides (PtS2, PtSe2, and PtTe2) electrocatalysis: Monotonic dependence on the chalcogen size. Adv. Funct. Mater., 2016, 26(24): 4306
https://doi.org/10.1002/adfm.201505402
71 Wang Y. , Zhou L. , Zhong M. , Liu Y. , Xiao S. , He J. . Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Res., 2022, 15(4): 3675
https://doi.org/10.1007/s12274-021-3979-6
72 Pi L. , Li L. , Liu K. , Zhang Q. , Li H. , Zhai T. . Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater., 2019, 29(51): 1904932
https://doi.org/10.1002/adfm.201904932
73 Zeng H. , Wen Y. , Yin L. , Q. Cheng R. , Wang H. , S. Liu C. , He J. . Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
https://doi.org/10.1007/s11467-023-1286-2
74 Wu W. , Qiu G. , Wang Y. , Wang R. , Ye P. . Tellurene: Its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev., 2018, 47(19): 7203
https://doi.org/10.1039/C8CS00598B
75 Wang Y. , Qiu G. , Wang R. , Huang S. , Wang Q. , Liu Y. , Du Y. , A. III Goddard W. , J. Kim M. , Xu X. , D. Ye P. , Wu W. . Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron., 2018, 1(4): 228
https://doi.org/10.1038/s41928-018-0058-4
76 Xie Z. , Xing C. , Huang W. , Fan T. , Li Z. , Zhao J. , Xiang Y. , Guo Z. , Li J. , Yang Z. , Dong B. , Qu J. , Fan D. , Zhang H. . Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater., 2018, 28(16): 1705833
https://doi.org/10.1002/adfm.201705833
77 Gao W. , Zheng Z. , Wen P. , Huo N. , Li J. . Novel two-dimensional monoelemental and ternary materials: Growth, physics and application. Nanophotonics, 2020, 9(8): 2147
https://doi.org/10.1515/nanoph-2019-0557
78 Xian L. , Pérez Paz A. , Bianco E. , M. Ajayan P. , Rubio A. . Square selenene and tellurene: Novel group VI elemental 2D materials with nontrivial topological properties. 2D Mater., 2017, 4(4): 041003
https://doi.org/10.1088/2053-1583/aa8418
79 Ji D. , Cai S. , R. Paudel T. , Sun H. , Zhang C. , Han L. , Wei Y. , Zang Y. , Gu M. , Zhang Y. , Gao W. , Huyan H. , Guo W. , Wu D. , Gu Z. , Y. Tsymbal E. , Wang P. , Nie Y. , Pan X. . Freestanding crystalline oxide perovskites down to the monolayer limit. Nature, 2019, 570(7759): 87
https://doi.org/10.1038/s41586-019-1255-7
80 Zhang Y. , H. Ma H. , Gan X. , Hui Y. , Zhang Y. , Su J. , Yang M. , Hu Z. , Xiao J. , Lu X. , Zhang J. , Hao Y. . Emergent midgap excitons in large-size freestanding 2D strongly correlated perovskite oxide films. Adv. Opt. Mater., 2021, 9(10): 2100025
https://doi.org/10.1002/adom.202100025
81 Lu Y. , Zhang H. , Wang Y. , Zhu X. , Xiao W. , Xu H. , Li G. , Li Y. , Fan D. , Zeng H. , Chen Z. , Yang X. . Solar-driven interfacial evaporation accelerated electrocatalytic water splitting on 2D perovskite oxide/MXene heterostructure. Adv. Funct. Mater., 2023, 33(21): 2215061
https://doi.org/10.1002/adfm.202215061
82 Burke K. . Perspective on density functional theory. J. Chem. Phys., 2012, 136(15): 150901
https://doi.org/10.1063/1.4704546
83 Mounet N. , Gibertini M. , Schwaller P. , Campi D. , Merkys A. , Marrazzo A. , Sohier T. , E. Castelli I. , Cepellotti A. , Pizzi G. , Marzari N. . Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol., 2018, 13(3): 246
https://doi.org/10.1038/s41565-017-0035-5
84 K. Geim A. , V. Grigorieva I. . Van der Waals heterostructures. Nature, 2013, 499(7459): 419
https://doi.org/10.1038/nature12385
85 Liu Y. , O. Weiss N. , Duan X. , C. Cheng H. , Huang Y. , Duan X. . Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1(9): 16042
https://doi.org/10.1038/natrevmats.2016.42
86 Novoselov K.Mishchenko A.Carvalho A.H. Castro Neto A., 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
87 Castellanos-Gomez A. , Duan X. , Fei Z. , R. Gutierrez H. , Huang Y. , Huang X. , Quereda J. , Qian Q. , Sutter E. , Sutter P. . Van der Waals heterostructures. Nat. Rev. Methods Primers, 2022, 2(1): 58
https://doi.org/10.1038/s43586-022-00139-1
88 L. Fan X. , F. Xin R. , Li L. , Zhang B. , Li C. , L. Zhou X. , Z. Chen H. , Y. Zhang H. , P. Ouyang F. , Zhou Y. . Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions. Front. Phys., 2023, 19(2): 23401
https://doi.org/10.1007/s11467-023-1342-y
89 Deng L. , Yu D. . Deep learning: Methods and applications. Foundations and Trends in Signal Processing, 2014, 7(3-4): 197
https://doi.org/10.1561/2000000039
90 Moen E. , Bannon D. , Kudo T. , Graf W. , Covert M. , Van Valen D. . Deep learning for cellular image analysis. Nat. Methods, 2019, 16(12): 1233
https://doi.org/10.1038/s41592-019-0403-1
91 LeCun Y. , Bengio Y. , Hinton G. . Deep learning. Nature, 2015, 521(7553): 436
https://doi.org/10.1038/nature14539
92 Deng L.Hinton G.Kingsbury B., New types of deep neural network learning for speech recognition and related applications: An overview, in: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 26‒31, 2013, 2013
93 W. Otter D.R. Medina J.K. Kalita J., A survey of the usages of deep learning for natural language processing, IEEE Trans. Neural Netw. Learn. Syst. 32(2), 604 (2021)
94 Z. Alom M.M. Taha T.Yakopcic C.Westberg S.Sidike P.S. Nasrin M.Hasan M.C. Van Essen B.A. S. Awwal A.K. Asari V., A state-of-the-art survey on deep learning theory and architectures, Electronics (Basel) 8(3), 292 (2019)
95 E. Hinton G. , R. Salakhutdinov R. . Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504
https://doi.org/10.1126/science.1127647
96 I. Jordan M. , M. Mitchell T. . Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255
https://doi.org/10.1126/science.aaa8415
97 S. McCulloch W.Pitts W., A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5(4), 115 (1943)
98 Rosenblatt F. . The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev., 1958, 65(6): 386
https://doi.org/10.1037/h0042519
99 E. Rumelhart D. , E. Hinton G. , J. Williams R. . Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533
https://doi.org/10.1038/323533a0
100 Fukushima K. . Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural Netw., 1988, 1(2): 119
https://doi.org/10.1016/0893-6080(88)90014-7
101 Lecun Y. , Bottou L. , Bengio Y. , Haffner P. . Gradient-based learning applied to document recognition. Proc. IEEE, 1998, 86(11): 2278
https://doi.org/10.1109/5.726791
102 Goodfellow I. , Pouget-Abadie J. , Mirza M. , Xu B. , Warde-Farley D. , Ozair S. , Courville A. , Bengio Y. . Generative adversarial networks. Commun. ACM, 2020, 63(11): 139
https://doi.org/10.1145/3422622
103 Cheng J.Yang Y.Tang X., et al.., Generative Adversarial Networks: A Literature Review, Trans. Internet Inf. Syst. (Seoul) 14(12) (2020)
104 Ronneberger O.Fischer P.Brox T., U-net: Convolutional networks for biomedical image segmentation, in: Proceedings of the Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5‒9, 2015, Proceedings, Part III 18, Springer, 2015
105 Li H. , Wu J. , Huang X. , Lu G. , Yang J. , Lu X. , Xiong Q. , Zhang H. . Rapid and reliable thickness identification of two-dimensional nanosheets using optical microscopy. ACS Nano, 2013, 7(11): 10344
https://doi.org/10.1021/nn4047474
106 C. Wang H. , W. Huang S. , M. Yang J. , H. Wu G. , P. Hsieh Y. , W. Feng S. , K. Lee M. , T. Kuo C. . Large-area few-layered graphene film determination by multispectral imaging microscopy. Nanoscale, 2015, 7(19): 9033
https://doi.org/10.1039/C5NR01544H
107 Li Y. , Dong N. , Zhang S. , Wang K. , Zhang L. , Wang J. . Optical identification of layered MoS2 via the characteristic matrix method. Nanoscale, 2016, 8(2): 1210
https://doi.org/10.1039/C5NR06287J
108 Zhang J. , Yu Y. , Wang P. , Luo C. , Wu X. , Sun Z. , Wang J. , D. Hu W. , Shen G. . Characterization of atomic defects on the photoluminescence in two-dimensional materials using transmission electron microscope. InfoMat, 2019, 1(1): 85
https://doi.org/10.1002/inf2.12002
109 Zhao W. , Xia B. , Lin L. , Xiao X. , Liu P. , Lin X. , Peng H. , Zhu Y. , Yu R. , Lei P. , Wang J. , Zhang L. , Xu Y. , Zhao M. , Peng L. , Li Q. , Duan W. , Liu Z. , Fan S. , Jiang K. . Low-energy transmission electron diffraction and imaging of large-area graphene. Sci. Adv., 2017, 3(9): e1603231
https://doi.org/10.1126/sciadv.1603231
110 Yang S. . Scanning transmission electron microscopy (STEM) study on novel two-dimensional materials. Microsc. Microanal., 2020, 26(S2): 2372
https://doi.org/10.1017/S1431927620021364
111 de Graaf S. , J. Kooi B. . Radiation damage and defect dynamics in 2D WS2: A low-voltage scanning transmission electron microscopy study. 2D Mater., 2021, 9(1): 015009
https://doi.org/10.1088/2053-1583/ac3377/meta
112 Kim S. , Moon D. , R. Jeon B. , Yeon J. , Li X. , Kim S. . Accurate atomic-scale imaging of two-dimensional lattices using atomic force microscopy in ambient conditions. Nanomaterials (Basel), 2022, 12(9): 1542
https://doi.org/10.3390/nano12091542
113 S. Wastl D. , J. Weymouth A. , J. Giessibl F. . Atomically resolved graphitic surfaces in air by atomic force microscopy. ACS Nano, 2014, 8(5): 5233
https://doi.org/10.1021/nn501696q
114 Tu Q. , Lange B. , Parlak Z. , M. J. Lopes J. , Blum V. , Zauscher S. . Quantitative subsurface atomic structure fingerprint for 2D materials and heterostructures by first-principles-calibrated contact-resonance atomic force microscopy. ACS Nano, 2016, 10(7): 6491
https://doi.org/10.1021/acsnano.6b02402
115 Lee C. , Yan H. , E. Brus L. , F. Heinz T. , Hone J. , Ryu S. . Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4(5): 2695
https://doi.org/10.1021/nn1003937
116 L. Silva D. , L. E. Campos J. , F. Fernandes T. , N. Rocha J. , R. P. Machado L. , M. Soares E. , R. Miquita D. , Miranda H. , Rabelo C. , P. Vilela Neto O. , Jorio A. , G. Cançado L. . Raman spectroscopy analysis of number of layers in mass-produced graphene flakes. Carbon, 2020, 161: 181
https://doi.org/10.1016/j.carbon.2020.01.050
117 Stenger I. , Schué L. , Boukhicha M. , Berini B. , Plaçais B. , Loiseau A. , Barjon J. . Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals. 2D Mater., 2017, 4(3): 031003
https://doi.org/10.1088/2053-1583/aa77d4
118 H. Ni Z. , M. Wang H. , Kasim J. , M. Fan H. , Yu T. , H. Wu Y. , P. Feng Y. , X. Shen Z. . Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett., 2007, 7(9): 2758
https://doi.org/10.1021/nl071254m
119 Frisenda R. , Niu Y. , Gant P. , J. Molina-Mendoza A. , Schmidt R. , Bratschitsch R. , Liu J. , Fu L. , Dumcenco D. , Kis A. , P. De Lara D. , Castellanos-Gomez A. . Micro-reflectance and transmittance spectroscopy: a versatile and powerful tool to characterize 2D materials. J. Phys. D Appl. Phys., 2017, 50(7): 074002
https://doi.org/10.1088/1361-6463/aa5256
120 Y. Zeng S. , Li F. , Tan C. , Yang L. , G. Wang Z. . Defect repairing in two-dimensional transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53604
https://doi.org/10.1007/s11467-023-1290-6
121 Ziatdinov M. , Dyck O. , Maksov A. , Li X. , Sang X. , Xiao K. , R. Unocic R. , Vasudevan R. , Jesse S. , V. Kalinin S. . Deep learning of atomically resolved scanning transmission electron microscopy images: Chemical identification and tracking local transformations. ACS Nano, 2017, 11(12): 12742
https://doi.org/10.1021/acsnano.7b07504
122 Madsen J.Liu P.Kling J.B. Wagner J.W. Hansen T.Winther O.Schiøtz J., A deep learning approach to identify local structures in atomic-resolution transmission electron microscopy images, Adv. Theory Simul. 1(8), 1800037 (2018)
123 Maksov A. , Dyck O. , Wang K. , Xiao K. , B. Geohegan D. , G. Sumpter B. , K. Vasudevan R. , Jesse S. , V. Kalinin S. , Ziatdinov M. . Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. npj Comput. Mater., 2019, 5(1): 12
https://doi.org/10.1038/s41524-019-0152-9
124 H. Yang D. , S. Chu Y. , F. N. Okello O. , Y. Seo S. , Moon G. , H. Kim K. , H. Jo M. , Shin D. , Mizoguchi T. , Yang S. , Y. Choi S. . Full automation of point defect detection in transition metal dichalcogenides through a dual mode deep learning algorithm. Mater. Horiz., 2024, 11(3): 747
https://doi.org/10.1039/D3MH01500A
125 H. Yang S. , Choi W. , W. Cho B. , O. T. Agyapong-Fordjour F. , Park S. , J. Yun S. , J. Kim H. , K. Han Y. , H. Lee Y. , K. Kim K. , M. Kim Y. . Deep learning-assisted quantification of atomic dopants and defects in 2D materials. Adv. Sci. (Weinh.), 2021, 8(16): 2101099
https://doi.org/10.1002/advs.202101099
126 H. Lee C. , Khan A. , Luo D. , P. Santos T. , Shi C. , E. Janicek B. , Kang S. , Zhu W. , A. Sobh N. , Schleife A. , K. Clark B. , Y. Huang P. . Deep learning enabled strain mapping of single-atom defects in two-dimensional transition metal dichalcogenides with sub-picometer precision. Nano Lett., 2020, 20(5): 3369
https://doi.org/10.1021/acs.nanolett.0c00269
127 Chu T.Zhou L.Zhang B.Z. Xuan F., Accurate atomic scanning transmission electron microscopy analysis enabled by deep learning, Nano Res., doi: 10.1007/s12274-023-6104-1 (2023)
128 Wu B.Wang L.Gao Z., A two-dimensional material recognition image algorithm based on deep learning, in: Proceedings of the 2019 International Conference on Information Technology and Computer Application (ITCA), IEEE, 2019
129 Saito Y. , Shin K. , Terayama K. , Desai S. , Onga M. , Nakagawa Y. , M. Itahashi Y. , Iwasa Y. , Yamada M. , Tsuda K. . Deep-learning-based quality filtering of mechanically exfoliated 2D crystals. npj Computat. Mater., 2019, 5(1): 124
https://doi.org/10.1038/s41524-019-0262-4
130 Han B. , Lin Y. , Yang Y. , Mao N. , Li W. , Wang H. , Yasuda K. , Wang X. , Fatemi V. , Zhou L. , I. J. Wang J. , Ma Q. , Cao Y. , Rodan-Legrain D. , Q. Bie Y. , Navarro-Moratalla E. , Klein D. , MacNeill D. , Wu S. , Kitadai H. , Ling X. , Jarillo-Herrero P. , Kong J. , Yin J. , Palacios T. . Deep-learning-enabled fast optical identification and characterization of 2D materials. Adv. Mater., 2020, 32(29): 2000953
https://doi.org/10.1002/adma.202000953
131 Masubuchi S. , Watanabe E. , Seo Y. , Okazaki S. , Sasagawa T. , Watanabe K. , Taniguchi T. , Machida T. . Deep-learning-based image segmentation integrated with optical microscopy for automatically searching for two-dimensional materials. npj 2D Mater. Appl., 2020, 4(1): 3
https://doi.org/10.1038/s41699-020-0137-z
132 Y. Lin T.Maire M.Belongie S., et al.., Microsoft coco: Common objects in context, in: Proceedings of the Computer Vision-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6‒12, 2014, Proceedings, Part V 13, Springer, 2014
133 Mahjoubi S. , Ye F. , Bao Y. , Meng W. , Zhang X. . Identification and classification of exfoliated graphene flakes from microscopy images using a hierarchical deep convolutional neural network. Eng. Appl. Artif. Intell., 2023, 119: 105743
https://doi.org/10.1016/j.engappai.2022.105743
134 Zhang Y. , Zhang H. , Zhou S. , Liu G. , Zhu J. . Deep learning-based layer identification of 2D nanomaterials. Coatings, 2022, 12(10): 1551
https://doi.org/10.3390/coatings12101551
135 Zhao H.Shi J.Qi X., et al.., Pyramid scene parsing network, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017
136 Qin X.Zhang Z.Huang C.Dehghan M.R. Zaiane O.Jagersand M., U2-net: Going deeper with nested U-structure for salient object detection, Pattern Recognit. 106, 107404 (2020)
137 Dong X. , Zhang Y. , Li H. , Yan Y. , Li J. , Song J. , Wang K. , Jakobi M. , K. Yetisen A. , W. Koch A. . Microscopic image deblurring by a generative adversarial network for 2D nanomaterials: Implications for wafer-scale semiconductor characterization. ACS Appl. Nano Mater., 2022, 5(9): 12855
https://doi.org/10.1021/acsanm.2c02725
138 Zhu L. , Tang J. , Li B. , Hou T. , Zhu Y. , Zhou J. , Wang Z. , Zhu X. , Yao Z. , Cui X. , Watanabe K. , Taniguchi T. , Li Y. , V. Han Z. , Zhou W. , Huang Y. , Liu Z. , C. Hone J. , Hao Y. . Artificial neuron networks enabled identification and characterizations of 2D materials and van der Waals heterostructures. ACS Nano, 2022, 16(2): 2721
https://doi.org/10.1021/acsnano.1c09644
139 Dong X. , Li H. , Wang K. , Menze B. , Jakobi M. , K. Yetisen A. , W. Koch A. . Multispectral microscopic multiplexed (3M) imaging of atomically-thin crystals using deep learning. Adv. Opt. Mater., 2024, 12(2): 2300860
https://doi.org/10.1002/adom.202300860
140 A. Nemnes G. , L. Mitran T. , Manolescu A. . Gap prediction in hybrid graphene-hexagonal boron nitride nanoflakes using artificial neural networks. J. Nanomater., 2019, 2019: 6960787
https://doi.org/10.1155/2019/6960787
141 Dong Y. , Wu C. , Zhang C. , Liu Y. , Cheng J. , Lin J. . Bandgap prediction by deep learning in configurationally hybridized graphene and boron nitride. npj Comput. Mater., 2019, 5(1): 26
https://doi.org/10.1038/s41524-019-0165-4
142 Cortes C. , Vapnik V. . Support-vector networks. Mach. Learn., 1995, 20(3): 273
https://doi.org/10.1007/BF00994018
143 Ma Y. , Lu S. , Zhang Y. , Zhang T. , Zhou Q. , Wang J. . Accurate energy prediction of large-scale defective two-dimensional materials via deep learning. Appl. Phys. Lett., 2022, 120(21): 213103
https://doi.org/10.1063/5.0091994
144 Dewapriya M. , Rajapakse R. , Dias W. . Characterizing fracture stress of defective graphene samples using shallow and deep artificial neural networks. Carbon, 2020, 163: 425
https://doi.org/10.1016/j.carbon.2020.03.038
145 C. Hsu Y. , H. Yu C. , J. Buehler M. . Using deep learning to predict fracture patterns in crystalline solids. Matter, 2020, 3(1): 197
https://doi.org/10.1016/j.matt.2020.04.019
146 J Lew A. , H. Yu C. , C. Hsu Y. , J. Buehler M. . Deep learning model to predict fracture mechanisms of grapheme. npj 2D Mater. Appl., 2021, 5(1): 48
https://doi.org/10.1038/s41699-021-00228-x
147 Zhang T. , Li X. , Kadkhodaei S. , Gao H. . Flaw insensitive fracture in nanocrystalline graphene. Nano Lett., 2012, 12(9): 4605
https://doi.org/10.1021/nl301908b
148 H. Yu C. , Y. Wu C. , J. Buehler M. . Deep learning based design of porous graphene for enhanced mechanical resilience. Comput. Mater. Sci., 2022, 206: 111270
https://doi.org/10.1016/j.commatsci.2022.111270
149 S. Elapolu M.I. R. Shishir M.Tabarraei A., A novel approach for studying crack propagation in polycrystalline graphene using machine learning algorithms, Comput. Mater. Sci. 201, 110878 (2022)
150 S. Elapolu M. , Tabarraei A. . Mechanical and fracture properties of polycrystalline graphene with hydrogenated grain boundaries. J. Phys. Chem. C, 2021, 125(20): 11147
https://doi.org/10.1021/acs.jpcc.1c01328
151 Shekhawat A. , O. Ritchie R. . Toughness and strength of nanocrystalline graphene. Nat. Commun., 2016, 7(1): 10546
https://doi.org/10.1038/ncomms10546
152 I. R. Shishir M. , Tabarraei A. . Traction–separation laws of graphene grain boundaries. Phys. Chem. Chem. Phys., 2021, 23(26): 14284
https://doi.org/10.1039/D1CP01569A
153 I. R. Shishir M.S. R. Elapolu M.Tabarraei A., A deep learning model for predicting mechanical properties of polycrystalline graphene, Comput. Mater. Sci. 218, 111924 (2023)
154 Shen Y. , Zhu S. . Machine learning mechanical properties of defect-engineered hexagonal boron nitride. Comput. Mater. Sci., 2023, 220: 112030
https://doi.org/10.1016/j.commatsci.2023.112030
155 Yang H. , Zhang Z. , Zhang J. , C. Zeng X. . Machine learning and artificial neural network prediction of interfacial thermal resistance between graphene and hexagonal boron nitride. Nanoscale, 2018, 10(40): 19092
https://doi.org/10.1039/C8NR05703F
156 Wan J. , W. Jiang J. , S. Park H. . Machine learning-based design of porous graphene with low thermal conductivity. Carbon, 2020, 157: 262
https://doi.org/10.1016/j.carbon.2019.10.037
157 Liu Q. , Gao Y. , Xu B. . Transferable, deep-learning-driven fast prediction and design of thermal transport in mechanically stretched graphene flakes. ACS Nano, 2021, 15(10): 16597
https://doi.org/10.1021/acsnano.1c06340
158 Zhang X. , Chen A. , Zhou Z. . High-throughput computational screening of layered and two-dimensional materials. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2019, 9(1): e1385
https://doi.org/10.1002/wcms.1385
159 Wang V. , Tang G. , C. Liu Y. , T. Wang R. , Mizuseki H. , Kawazoe Y. , Nara J. , T. Geng W. . High-throughput computational screening of two-dimensional semiconductors. J. Phys. Chem. Lett., 2022, 13(50): 11581
https://doi.org/10.1021/acs.jpclett.2c02972
160 Sarikurt S. , Kocabaş T. , Sevik C. . High-throughput computational screening of 2D materials for thermoelectrics. J. Mater. Chem. A, 2020, 8(37): 19674
https://doi.org/10.1039/D0TA04945J
161 O. Pyzer-Knapp E. , Suh C. , Gómez-Bombarelli R. , Aguilera-Iparraguirre J. , Aspuru-Guzik A. . What is high-throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res., 2015, 45(1): 195
https://doi.org/10.1146/annurev-matsci-070214-020823
162 Y. Ma X. , P. Lewis J. , B. Yan Q. , Su G. . Accelerated discovery of two-dimensional optoelectronic octahedral oxyhalides via high-throughput ab initio calculations and machine learning. J. Phys. Chem. Lett., 2019, 10(21): 6734
https://doi.org/10.1021/acs.jpclett.9b02420
163 G. Van de Walle C. , Neugebauer J. . First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys., 2004, 95(8): 3851
https://doi.org/10.1063/1.1682673
164 K. Shoichet B. . Virtual screening of chemical libraries. Nature, 2004, 432(7019): 862
https://doi.org/10.1038/nature03197
165 Ghosh S. , Nie A. , An J. , Huang Z. . Structure-based virtual screening of chemical libraries for drug discovery. Curr. Opin. Chem. Biol., 2006, 10(3): 194
https://doi.org/10.1016/j.cbpa.2006.04.002
166 Foscato M. , Occhipinti G. , Venkatraman V. , K. Alsberg B. , R. Jensen V. . Automated design of realistic organometallic molecules from fragments. J. Chem. Inf. Model., 2014, 54(3): 767
https://doi.org/10.1021/ci4007497
167 Mauser H. , Stahl M. . Chemical fragment spaces for de novo design. J. Chem. Inf. Model., 2007, 47(2): 318
https://doi.org/10.1021/ci6003652
168 R. Schleder G. , C. Padilha A. , M. Acosta C. , Costa M. , Fazzio A. . From DFT to machine learning: recent approaches to materials science – A review. J. Phys.: Mater., 2019, 2(3): 032001
https://doi.org/10.1088/2515-7639/ab084b
169 Dong Y. , Li D. , Zhang C. , Wu C. , Wang H. , Xin M. , Cheng J. , Lin J. . Inverse design of two-dimensional graphene/h-BN hybrids by a regressional and conditional GAN. Carbon, 2020, 169: 9
https://doi.org/10.1016/j.carbon.2020.07.013
170 Fung V. , Zhang J. , Hu G. , Ganesh P. , G. Sumpter B. . Inverse design of two-dimensional materials with invertible neural networks. npj Computat. Mater., 2021, 7(1): 200
https://doi.org/10.1038/s41524-021-00670-x
171 Wu S. , Wang Z. , Zhang H. , Cai J. , Li J. . Deep learning accelerates the discovery of two-dimensional catalysts for hydrogen evolution reaction. Energy & Environm. Mater., 2023, 6(1): e12259
https://doi.org/10.1002/eem2.12259
172 S. Chong S. , S. Ng Y. , Q. Wang H. , C. Zheng J. . Advances of machine learning in materials science: Ideas and techniques. Front. Phys., 2024, 19(1): 13501
https://doi.org/10.1007/s11467-023-1325-z
173 Ryu B. , Wang L. , Pu H. , K. Y. Chan M. , Chen J. . Understanding, discovery, and synthesis of 2D materials enabled by machine learning. Chem. Soc. Rev., 2022, 51(6): 1899
https://doi.org/10.1039/D1CS00503K
174 Yin H. , Sun Z. , Wang Z. , Tang D. , H. Pang C. , Yu X. , S. Barnard A. , Zhao H. , Yin Z. . The data-intensive scientific revolution occurring where two-dimensional materials meet machine learning. Cell Rep. Phys. Sci., 2021, 2(7): 100482
https://doi.org/10.1016/j.xcrp.2021.100482
175 Si Z.Zhou D.Yang J.Lin X., 2D material property characterizations by machine-learning-assisted microscopies, Appl. Phys. A 129(4), 248 (2023)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed