1. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China 2. Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 3. College of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Quantum secure direct communication (QSDC) can transmit secret messages without keys, making it an important branch of quantum communication. We present a hybrid entanglement-based quantum secure direct communication (HE-QSDC) protocol with simple linear optical elements, combining the benefits of both continuous variables (CV) and discrete variables (DV) encoding. We analyze the security and find that the QSDC protocol has a positive security capacity when the bit error rate is less than 0.073. Compared with previous DV QSDC protocols, our protocol has higher communication efficiency due to performing nearly deterministic Bell-state measurement. On the other hand, compared with CV QSDC protocol, this protocol has higher fidelity with large . Based on these advantages, our protocol may provide an alternative approach to realize secure communication.
Scarani V., Bechmann-Pasquinucci H., J. Cerf N., Dušek M., Lütkenhaus N., Peev M.. The security of practical quantum key distribution. Rev. Mod. Phys., 2009, 81(3): 1301 https://doi.org/10.1103/RevModPhys.81.1301
2
H. Xu F., F. Ma X., Zhang Q., K. Lo H., W. Pan J.. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 2020, 92(2): 025002 https://doi.org/10.1103/RevModPhys.92.025002
Shen A., Y. Cao X., Wang Y., Fu Y., Gu J., B. Liu W., X. Weng C., L. Yin H., B. Chen Z.. Experimental quantum secret sharing based on phase encoding of coherent states. Sci. China Phys. Mech. Astron., 2023, 66(6): 260311 https://doi.org/10.1007/s11433-023-2105-7
9
L. Long G., S. Liu X.. Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A, 2002, 65(3): 032302 https://doi.org/10.1103/PhysRevA.65.032302
10
G. Deng F., L. Long G., S. Liu X.. Two-step quantum direct communication protocol using the Einstein‒Podolsky‒Rosen pair block. Phys. Rev. A, 2003, 68(4): 042317 https://doi.org/10.1103/PhysRevA.68.042317
H. Niu P., R. Zhou Z., S. Lin Z., B. Sheng Y., G. Yin L., L. Long G.. Measurement-device-independent quantum communication without encryption. Sci. Bull. (Beijing), 2018, 63(20): 1345 https://doi.org/10.1016/j.scib.2018.09.009
13
R. Zhou Z., B. Sheng Y., H. Niu P., G. Yin L., L. Long G., Hanzo L.. Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2020, 63(3): 230362 https://doi.org/10.1007/s11433-019-1450-8
14
Zhou L., B. Sheng Y., L. Long G.. Device-independent quantum secure direct communication against collective attacks. Sci. Bull. (Beijing), 2020, 65(1): 12 https://doi.org/10.1016/j.scib.2019.10.025
15
Zhou L., W. Xu B., Zhong W., B. Sheng Y.. Device-independent quantum secure direct communication with single-photon sources. Phys. Rev. Appl., 2023, 19(1): 014036 https://doi.org/10.1103/PhysRevApplied.19.014036
16
Zeng H.M. Du M.Zhong W.Zhou L.B. Sheng Y., High-capacity device-independent quantum secure direct communication based on hyper-encoding, Fundament. Res., doi: 10.1016/j.fmre.2023.11.006 (2023)
Zhou L., B. Sheng Y.. One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2022, 65(5): 250311 https://doi.org/10.1007/s11433-021-1863-9
19
W. Ying J., Zhou L., Zhong W., B. Sheng Y.. Measurement-device-independent one-step quantum secure direct communication. Chin. Phys. B, 2022, 31(12): 120303 https://doi.org/10.1088/1674-1056/ac8f37
20
R. Jin X., Ji X., Q. Zhang Y., Zhang S., K. Hong S., H. Yeon K., I. Um C.. Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A, 2006, 354(1−2): 67 https://doi.org/10.1016/j.physleta.2006.01.035
21
Zhang Q.M. Du M.Zhong W.B. Sheng Y.Zhou L., Single-photon based three-party quantum secure direct communication with identity authentication, Ann. Phys. (Berlin), doi: 10.1002/andp.202300407 (2023)
22
P. Hong Y., Zhou L., Zhong W., B. Sheng Y.. Measurement-device-independent three-party quantum secure direct communication. Quantum Inform. Process., 2023, 22(2): 111 https://doi.org/10.1007/s11128-023-03853-1
23
X. Xiao Y., Zhou L., Zhong W., M. Du M., B. Sheng Y.. The hyperentanglement-based quantum secure direct communication protocol with single-photon measurement. Quantum Inform. Process., 2023, 22(9): 339 https://doi.org/10.1007/s11128-023-04097-9
24
D. Zhu A., Xia Y., B. Fan Q., Zhang S.. Secure direct communication based on secret transmitting order of particles. Phys. Rev. A, 2006, 73(2): 022338 https://doi.org/10.1103/PhysRevA.73.022338
25
W. Cao Z., Wang L., X. Liang K., Chai G., Y. Peng J.. Continuous-variable quantum secure direct communication based on Gaussian mapping. Phys. Rev. Appl., 2021, 16(2): 024012 https://doi.org/10.1103/PhysRevApplied.16.024012
26
W. Cao Z., Lu Y., Chai G., Yu H., X. Liang K., Wang L.. Realization of quantum secure direct communication with continuous variable. Research, 2023, 6: 0193 https://doi.org/10.34133/research.0193
27
Srikara S., Thapliyal K., Pathak A.. Continuous variable direct secure quantum communication using Gaussian states. Quantum Inform. Process., 2020, 19(4): 132 https://doi.org/10.1007/s11128-020-02627-3
28
X. Liang K., W. Cao Z., L. Chen X., Wang L., Chai G., Y. Peng J.. A quantum secure direct communication scheme based on intermediate-basis. Front. Phys., 2023, 18(5): 51301 https://doi.org/10.1007/s11467-023-1284-4
29
Li T., L. Long G.. Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys., 2020, 22(6): 063017 https://doi.org/10.1088/1367-2630/ab8ab5
30
D. Ye Z., Pan D., Sun Z., G. Du C., G. Yin L., L. Long G.. Generic security analysis framework for quantum secure direct communication. Front. Phys., 2021, 16(2): 21503 https://doi.org/10.1007/s11467-020-1025-x
31
Y. Hu J., Yu B., Y. Jing M., T. Xiao L., T. Jia S., Q. Qin G., L. Long G.. Experimental quantum secure direct communication with single photons. Light Sci. Appl., 2016, 5(9): e16144 https://doi.org/10.1038/lsa.2016.144
32
Zhang W., S. Ding D., B. Sheng Y., Zhou L., S. Shi B., C. Guo G.. Quantum secure direct communication with quantum memory. Phys. Rev. Lett., 2017, 118(22): 220501 https://doi.org/10.1103/PhysRevLett.118.220501
33
Zhu F., Zhang W., B. Sheng Y., D. Huang Y.. Experimental long-distance quantum secure direct communication. Sci. Bull. (Beijing), 2017, 62(22): 1519 https://doi.org/10.1016/j.scib.2017.10.023
34
Pan D., S. Lin Z., W. Wu J., R. Zhang H., Sun Z., Ruan D., G. Yin L., L. Long G.. Experimental free-space quantum secure direct communication and its security analysis. Photon. Res., 2020, 8(9): 1522 https://doi.org/10.1364/PRJ.388790
35
Qi Z., Li Y., W. Huang Y., Feng J., L. Zheng Y., F. Chen X.. A 15-user quantum secure direct communication network. Light Sci. Appl., 2021, 10(1): 183 https://doi.org/10.1038/s41377-021-00634-2
36
Liu X., Luo D., L. Lin G., H. Chen Z., F. Huang C., Z. Li S., X. Zhang C., R. Zhang Z., J. Wei K.. Fiber-based quantum secure direct communication without active polarization compensation. Sci. China Phys. Mech. Astron., 2022, 65(12): 120311 https://doi.org/10.1007/s11433-022-1976-0
37
Zhang H., Sun Z., Qi R., Yin L., L. Long G., Lu J.. Realization of quantum secure direct communication over 100 km fiber with time-bin and phase quantum states. Light Sci. Appl., 2022, 11(1): 83 https://doi.org/10.1038/s41377-022-00769-w
38
Paparelle I.Mousavi F.Scazza F.Bassi A.Paris M. Zavatta A., Practical quantum secure direct communication with squeezed states, arXiv: 2306.14322 (2023)
39
Fu Y., L. Yin H., Y. Chen T., B. Chen Z.. Long-distance measurement-device-independent multi-party quantum communication. Phys. Rev. Lett., 2015, 114(9): 090501 https://doi.org/10.1103/PhysRevLett.114.090501
40
Pramanik T., H. Lee D., W. Cho Y., Lim H., Han S., Jung H., Moon S., J. Lee K., Kim Y.. Equitable multiparty quantum communication without a trusted third party. Phys. Rev. Appl., 2020, 14(6): 064074 https://doi.org/10.1103/PhysRevApplied.14.064074
Muller A., Breguet J., Gisin N.. Experimental demonstration of quantum cryptography using polarized photons in optical fiber over more than 1 km. Europhys. Lett., 1993, 23(6): 383 https://doi.org/10.1209/0295-5075/23/6/001
43
D. Townsend P., A. Thompson I.. A quantum key distribution channel based on optical fibre. J. Mod. Opt., 1994, 41(12): 2425 https://doi.org/10.1080/09500349414552271
Grosshans F., Van Assche G., Wenger J., Brouri R., J. Cerf N., Grangier P.. Quantum key distribution using Gaussian-modulated coherent states. Nature, 2003, 421(6920): 238 https://doi.org/10.1038/nature01289
46
Lodewyck J., Bloch M., García-Patrón R., Fossier S., Karpov E., Diamanti E., Debuisschert T., J. Cerf N., Tualle-Brouri R., W. McLaughlin S., Grangier P.. Quantum key distribution over 25 km with an all-fiber continuous-variable system. Phys. Rev. A, 2007, 76(4): 042305 https://doi.org/10.1103/PhysRevA.76.042305
47
Wang C., Huang D., Huang P., Lin D., Peng J., Zeng G.. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel. Sci. Rep., 2015, 5(1): 14607 https://doi.org/10.1038/srep14607
48
Zhang Y., Chen Z., Pirandola S., Wang X., Zhou C., Chu B., Zhao Y., Xu B., Yu S., Guo H.. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber. Phys. Rev. Lett., 2020, 125(1): 010502 https://doi.org/10.1103/PhysRevLett.125.010502
49
B. Brask J., Rigas I., S. Polzik E., L. Andersen U., S. Sørensen A.. Hybrid long-distance entanglement distribution protocol. Phys. Rev. Lett., 2010, 105(16): 160501 https://doi.org/10.1103/PhysRevLett.105.160501
W. Lee S., Jeong H.. Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A, 2013, 87(2): 022326 https://doi.org/10.1103/PhysRevA.87.022326
52
Bose S., Jeong H.. Quantum teleportation of hybrid qubits and single-photon qubits using Gaussian resources. Phys. Rev. A, 2022, 105(3): 032434 https://doi.org/10.1103/PhysRevA.105.032434
53
W. Pan J., Daniell M., Gasparoni S., Weihs G., Zeilinger A.. Experimental demonstration of four-photon entanglement and high-fidelity teleportation. Phys. Rev. Lett., 2001, 86(20): 4435 https://doi.org/10.1103/PhysRevLett.86.4435
54
Calsamiglia J., Lütkenhaus N.. Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B, 2001, 72(1): 67 https://doi.org/10.1007/s003400000484
Ourjoumtsev A., Jeong H., Tualle-Brouri R., Grangier P.. Generation of optical “Schrödinger cats” from photon number states. Nature, 2007, 448(7155): 784 https://doi.org/10.1038/nature06054
57
H. Li B., M. Xie Y., Li Z., X. Weng C., L. Li C., L. Yin H., B. Chen Z.. Long-distance twin-field quantum key distribution with entangled sources. Opt. Lett., 2021, 46(22): 5529 https://doi.org/10.1364/OL.443099
58
M. Xie Y., H. Li B., S. Lu Y., Y. Cao X., B. Liu W., L. Yin H., B. Chen Z.. Overcoming the rate-distance limit of device-independent quantum key distribution. Opt. Lett., 2021, 46(7): 1632 https://doi.org/10.1364/OL.417851
Jeong H., Zavatta A., Kang M., W. Lee S., S. Costanzo L., Grandi S., C. Ralph T., Bellini M.. Generation of hybrid entanglement of light. Nat. Photonics, 2014, 8(7): 564 https://doi.org/10.1038/nphoton.2014.136
61
Morin O., Huang K., Liu J., Le Jeannic H., Fabre C., Laurat J.. Remote creation of hybrid entanglement between particle-like and wave-like optical qubits. Nat. Photonics, 2014, 8(7): 570 https://doi.org/10.1038/nphoton.2014.137
62
Kwon H., Jeong H.. Generation of hybrid entanglement between a single-photon polarization qubit and a coherent state. Phys. Rev. A, 2015, 91(1): 012340 https://doi.org/10.1103/PhysRevA.91.012340
C. Luo C., Zhou L., Zhong W., B. Sheng Y.. Purification for hybrid logical qubit entanglement. Quantum Inform. Process., 2022, 21(8): 300 https://doi.org/10.1007/s11128-022-03646-y
66
van Loock P., D. Ladd T., Sanaka K., Yamaguchi F., Nemoto K., J. Munro W., Yamamoto Y.. Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett., 2006, 96(24): 240501 https://doi.org/10.1103/PhysRevLett.96.240501
Fujiwara M., Toyoshima M., Sasaki M., Yoshino K., Nambu Y., Tomita A.. Performance of hybrid entanglement photon pair source for quantum key distribution. Appl. Phys. Lett., 2009, 95(26): 261103 https://doi.org/10.1063/1.3276559
69
Fujiwara M., Yoshino K., Nambu Y., Yamashita T., Miki S., Terai H., Wang Z., Toyoshima M., Tomita A., Sasaki M.. Modified E91 protocol demonstration with hybrid entanglement photon source. Opt. Express, 2014, 22(11): 13616 https://doi.org/10.1364/OE.22.013616
70
X. Zhang C., H. Guo B., M. Cheng G., J. Guo J., H. Fan R.. Spin‒orbit hybrid entanglement quantum key distribution scheme. Sci. China Phys. Mech. Astron., 2014, 57(11): 2043 https://doi.org/10.1007/s11433-014-5557-3
71
L. Zhang S.. Improving long-distance distribution of en- tangled coherent state with the method of twin-field quantum key distribution. Opt. Express, 2019, 27(25): 37087 https://doi.org/10.1364/OE.27.037087
72
Bose S.Singh J.Cabello A.Jeong H., Long distance measurement-device-independent quantum key distribution using entangled states between continuous and discrete variables, arXiv: 2305.18906 (2023)
73
B. Sheng Y., Zhou L., L. Long G.. Hybrid entanglement purification for quantum repeaters. Phys. Rev. A, 2013, 88(2): 022302 https://doi.org/10.1103/PhysRevA.88.022302
V. Sychev D., E. Ulanov A., S. Tiunov E., A. Pushkina A., Kuzhamuratov A., Novikov V., I. Lvovsky A.. Entanglement and teleportation between polarization and wave-like encodings of an optical qubit. Nat. Commun., 2018, 9(1): 3672 https://doi.org/10.1038/s41467-018-06055-x
76
Jeong H., S. Kim M., Lee J.. Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel. Phys. Rev. A, 2001, 64(5): 052308 https://doi.org/10.1103/PhysRevA.64.052308
77
W. Wu J., S. Lin Z., G. Yin L., L. Long G.. Security of quantum secure direct communication based on Wyner’s wiretap channel theory. Quantum Eng., 2019, 1(4): e26 https://doi.org/10.1002/que2.26
78
Y. Qi R., Sun Z., S. Lin Z., H. Niu P., T. Hao W., Y. Song L., Huang Q., C. Gao J., G. Yin L., L. Long G.. Implementation and security analysis of practical quantum secure direct communication. Light Sci. Appl., 2019, 8(1): 22 https://doi.org/10.1038/s41377-019-0132-3
79
S. Holevo A.. Bounds for the quantity of information transmitted by a quantum communication channel. Probl. Peredachi Inf., 1973, 9(3): 177
Deutsch D., Ekert A., Jozsa R., Macchiavello C., Popescu S., Sanpera A.. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett., 1996, 77(13): 2818 https://doi.org/10.1103/PhysRevLett.77.2818
83
K. Lo H., F. Chau H.. Unconditional security of quantum key distribution over arbitrarily long distances. Science, 1999, 283(5410): 2050 https://doi.org/10.1126/science.283.5410.2050
84
W. Shor P., Preskill J.. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett., 2000, 85(2): 441 https://doi.org/10.1103/PhysRevLett.85.441
85
H. Louisell W., Quantum Statistical Properties of Radiation, New York: Wiley, 1973
86
Kim H., Park J., Jeong H.. Transfer of different types of optical qubits over a lossy environment. Phys. Rev. A, 2014, 89(4): 042303 https://doi.org/10.1103/PhysRevA.89.042303
87
Kim H., W. Lee S., Jeong H.. Two different types of optical hybrid qubits for teleportation in a lossy environment. Quantum Inform. Process., 2016, 15(11): 4729 https://doi.org/10.1007/s11128-016-1408-7
C. Ralph T., Gilchrist A., J. Milburn G., J. Munro W., Glancy S.. Quantum computation with optical coherent states. Phys. Rev. A, 2003, 68(4): 042319 https://doi.org/10.1103/PhysRevA.68.042319
91
van Loock P., Lütkenhaus N., J. Munro W., Nemoto K.. Quantum repeaters using coherent-state communication. Phys. Rev. A, 2008, 78(6): 062319 https://doi.org/10.1103/PhysRevA.78.062319
92
H. Bennett C., Brassard G., Popescu S., Schumacher B., A. Smolin J., K. Wootters W.. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 1996, 76(5): 722 https://doi.org/10.1103/PhysRevLett.76.722
93
S. Yan P., Zhou L., Zhong W., B. Sheng Y.. Advances in quantum entanglement purification. Sci. China Phys. Mech. Astron., 2023, 66(5): 250301 https://doi.org/10.1007/s11433-022-2065-x
94
Q. Zhou Z., Liu C., F. Li C., C. Guo G., Oblak D., Lei M., Faraon A., Mazzera M., de Riedmatten H.. Photonic integrated quantum memory in rare-earth doped solids. Laser Photonics Rev., 2023, 17(10): 2300257 https://doi.org/10.1002/lpor.202300257
95
F. Wang Y., F. Li J., C. Zhang S., Y. Su K., R. Zhou Y., Y. Liao K., W. Du S., Yan H., L. Zhu S.. Efficient quantum memory for single-photon polarization qubits. Nat. Photonics, 2019, 13(5): 346 https://doi.org/10.1038/s41566-019-0368-8
96
X. Zhu T., Liu C., Jin M., X. Su M., P. Liu Y., J. Li W., Ye Y., Q. Zhou Z., F. Li C., C. Guo G.. On-demand integrated quantum memory for polarization qubits. Phys. Rev. Lett., 2022, 128(18): 180501 https://doi.org/10.1103/PhysRevLett.128.180501
97
Ma Y., Z. Ma Y., Q. Zhou Z., F. Li C., C. Guo G.. One-hour coherent optical storage in an atomic frequency comb memory. Nat. Commun., 2021, 12(1): 2381 https://doi.org/10.1038/s41467-021-22706-y