Some aspects of atom-field interactions in curved spacetime are reviewed. Of great interest are quantum radiative and entanglement processes arising out of Rindler and black hole spacetimes, which involve the role of Hawking−Unruh and dynamical Casimir effects. Most of the discussion surrounds the radiative part of interactions. For this, we specifically reassess the conventional understandings of atomic radiative transitions and energy level shifts in curved spacetime. We also briefly outline the status quo of entanglement dynamics study in curved spacetime, and highlight literature related to some novel insights, like entanglement harvesting. On one hand, the study of the role played by spacetime curvature in quantum radiative and informational phenomena has implications for fundamental physics, notably the gravity-quantum interface. In particular, one examines the viability of the Equivalence Principle, which is at the heart of Einstein’s general theory of relativity. On the other hand, it can be instructive for manipulating quantum information and light propagation in arbitrary geometries. Some issues related to nonthermal effects of acceleration are also discussed.
E. Chang D., S. Douglas J., González-Tudela A., L. Hung C., J. Kimble H.. Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys., 2018, 90(3): 031002 https://doi.org/10.1103/RevModPhys.90.031002
4
Ozawa T., M. Price H., Amo A., Goldman N., Hafezi M., Lu L., C. Rechtsman M., Schuster D., Simon J., Zilberberg O., Carusotto I.. Topological photonics. Rev. Mod. Phys., 2019, 91(1): 015006 https://doi.org/10.1103/RevModPhys.91.015006
5
M. Harry (for the LIGO Scientific Collaboration) G.. Advanced LIGO: The next generation of gravitational wave detectors. Class. Quantum Gravity, 2010, 27(8): 084006 https://doi.org/10.1088/0264-9381/27/8/084006
6
Aso Y., Michimura Y., Somiya K., Ando M., Miyakawa O., Sekiguchi T., Tatsumi D., Yamamoto (The KAGRA Collaboration) H.. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D, 2013, 88: 043007 https://doi.org/10.1103/PhysRevD.88.043007
7
L. Dooley K.R. Leong J.Adams T.Affeldt C.Bisht A. Bogan C.Degallaix J.Gräf C.Hild S.Hough J. Khalaidovski A.Lastzka N.Lough J. Lück H.Macleod D.Nuttall L.Prijatelj M.Schnabel R. Schreiber E.Slutsky J.Sorazu B.A. Strain K.Vahlbruch H.Was M.Willke B.Wittel H. Danzmann K.Grote H., GEO 600 and the GEO-HF upgrade program: Successes and challenges, Class. Quantum Gravity 33(7), 075009 (2016)
8
Yu H., (LIGO Scientific) .. et al.. Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature, 2020, 583(7814): 43 https://doi.org/10.1038/s41586-020-2420-8
9
Acernese F., (The Virgo Collaboration) .. et al.. Quantum backaction on kg-scale mirrors: Observation of radiation pressure noise in the advanced Virgo detector. Phys. Rev. Lett., 2020, 125(13): 131101 https://doi.org/10.1103/PhysRevLett.125.131101
10
S. Safronova M., Budker D., DeMille D., F. J. Kimball D., Derevianko A., W. Clark C.. Search for new physics with atoms and molecules. Rev. Mod. Phys., 2018, 90(2): 025008 https://doi.org/10.1103/RevModPhys.90.025008
11
H. Schultheiss V., Batz S., Szameit A., Dreisow F., Nolte S., Tünnermann A., Longhi S., Peschel U.. Optics in curved space. Phys. Rev. Lett., 2010, 105(14): 143901 https://doi.org/10.1103/PhysRevLett.105.143901
G. Philbin T., Kuklewicz C., Robertson S., Hill S., Konig F., Leonhardt U.. Fiber-optical analog of the event horizon. Science, 2008, 319(5868): 1367 https://doi.org/10.1126/science.1153625
15
Bekenstein R.Kabessa Y.Sharabi Y. Tal O.Engheta N.Eisenstein G.J. Agranat A.Segev M., in: 2016 Conference on Lasers and Electro-Optics (CLEO), 1 (2016)
16
Patsyk A., A. Bandres M., Bekenstein R., Segev M.. Observation of accelerating wave packets in curved space. Phys. Rev. X, 2018, 8(1): 011001 https://doi.org/10.1103/PhysRevX.8.011001
Viermann C., Sparn M., Liebster N., Hans M., Kath E., Parra-López Á., Tolosa-Simeón M., Sánchez-Kuntz N., Haas T., Strobel H., Floerchinger S., K. Oberthaler M.. Quantum field simulator for dynamics in curved spacetime. Nature, 2022, 611(7935): 260 https://doi.org/10.1038/s41586-022-05313-9
19
Lopp R., S. Martín-Martinez E., N. Page D.. Relativity and quantum optics: Accelerated atoms in optical cavities. Class. Quantum Gravity, 2018, 35(22): 224001 https://doi.org/10.1088/1361-6382/aae750
20
O. Scully M., Fulling S., Lee D., N. Page D., Schleich W., Svidzinsky A.. Quantum optics approach to radiation from atoms falling into a black hole. Proc. Natl. Acad. Sci. USA, 2018, 115(32): 8131 https://doi.org/10.1073/pnas.1807703115
21
Martín-Martínez E., R. Perche T., de S. L. Torres B.. General relativistic quantum optics: Finite-size particle detector models in curved spacetimes. Phys. Rev. D, 2020, 101(4): 045017 https://doi.org/10.1103/PhysRevD.101.045017
22
S. Zhan M., Y. Cai Q., C. Zhang B.. Gravitational effects of atomic and molecular systems. Sci. Sin. Phys. Mech. Astron., 2014, 44(9): 879 https://doi.org/10.1360/SSPMA-2013-00095
23
Leonhardt U., Essential Quantum Optics, Cambridge: Cambridge University Press, 2010
24
Boettcher I., Bienias P., Belyansky R., J. Kollár A., V. Gorshkov A.. Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry. Phys. Rev. A, 2020, 102(3): 032208 https://doi.org/10.1103/PhysRevA.102.032208
25
G. Garcia D., J. Chaplain G., Bĕlín J., Tyc T., Englert C., Courtial J.. Optical triangulations of curved spaces. Optica, 2020, 7: 142 https://doi.org/10.1364/OPTICA.378357
26
Steinhauer J.. Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat. Phys., 2016, 12(10): 959 https://doi.org/10.1038/nphys3863
Sheng T., Qian J., Li X., Niu Y., Gong S.. Quantum simulation of the Unruh effect with a Rydberg-dressed Bose‒Einstein condensate. Phys. Rev. A, 2021, 103(1): 013301 https://doi.org/10.1103/PhysRevA.103.013301
Eckel S.Kumar A.Jacobson T.B. Spielman I.K. Campbell G., A rapidly expanding Bose‒Einstein condensate: An expanding universe in the lab, Phys. Rev. X 8(2), 021021 (2018)
34
P. Schmit R., G. Taketani B., K. Wilhelm F.. Quantum simulation of particle creation in curved space-time. PLoS One, 2020, 15(3): e0229382 https://doi.org/10.1371/journal.pone.0229382
Fuentes-Schuller I., B. Mann R.. Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett., 2005, 95(12): 120404 https://doi.org/10.1103/PhysRevLett.95.120404
M. Alsing P., Fuentes-Schuller I., B. Mann R., E. Tessier T.. Entanglement of Dirac fields in noninertial frames. Phys. Rev. A, 2006, 74(3): 032326 https://doi.org/10.1103/PhysRevA.74.032326
41
Wang J.Jing J., Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83, 022314 (2011), arXiv: 1012.4268 [quant-ph] [Erratum: Phys. Rev. A 97, 029902 (2018)]
E. Bruschi D., Dragan A., R. Lee A., Fuentes I., Louko J.. Relativistic motion generates quantum gates and entanglement resonances. Phys. Rev. Lett., 2013, 111(9): 090504 https://doi.org/10.1103/PhysRevLett.111.090504
Lopp R.Martin-Martinez E.N. Page D., Relativity and quantum optics: Accelerated atoms in optical cavities, Class. Quant. Grav. 35, 224001 (2018), arXiv: 1806.10158 [quant-ph]
46
Martín-Martínez E., R. Perche T., de S. L. Torres B.. General relativistic quantum optics: Finite-size particle detector models in curved spacetimes. Phys. Rev. D, 2020, 101(4): 045017 https://doi.org/10.1103/PhysRevD.101.045017
Rätzel D., Howl R., Lindkvist J., Fuentes I.. Dynamical response of Bose–Einstein condensates to oscillating gravitational fields. New J. Phys., 2018, 20(7): 073044 https://doi.org/10.1088/1367-2630/aad272
Collas P.Klein D., The Dirac equation in curved space-time: A guide for calculations, Springer Briefs in Physics, Springer, 2019, arXiv: 1809.02764 [gr-qc]
52
O. Scully M.S. Zubairy M., Quantum Optics, Cambridge: Cambridge University Press, 1997
53
Compagno G.Passante R.Persico F., Atom-Field Interactions and Dressed Atoms, Cambridge Studies in Modern Optics, Cambridge University Press, 1995
A. Fulling S.. Nonuniqueness of canonical field quantization in riemannian space-time. Phys. Rev. D, 1973, 7(10): 2850 https://doi.org/10.1103/PhysRevD.7.2850
Frodden E., Valdés N.. Unruh effect: Introductory notes to quantum effects for accelerated observers. Int. J. Mod. Phys. A, 2018, 33(27): 1830026 https://doi.org/10.1142/S0217751X18300260
63
B. G. Casimir H., Indag. Math. 10, 261 (1948)
64
Bordag M.L. Klimchitskaya G.Mohideen U. M. Mostepanenko V., Advances in the Casimir Effect, Vol. 145, Oxford University Press, 2009
65
T. Moore G.. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys., 1970, 11(9): 2679 https://doi.org/10.1063/1.1665432
A. Fulling S., C. W. Davies P.. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A, 1976, 348(1654): 393 https://doi.org/10.1098/rspa.1976.0045
68
C. W. Davies P., A. Fulling S.. Quantum vacuum energy in two dimensional space-times. Proc. R. Soc. Lond. A, 1977, 354(1676): 59 https://doi.org/10.1098/rspa.1977.0056
69
R. Anderson P.R. R. Good M.R. Evans C., Black hole − moving mirror I: An exact correspondence, in: 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Vol. 2 (2017), pp 1701–1704, arXiv: 1507.03489 [gr-qc]
70
R. R. Good M.R. Anderson P.R. Evans C., Black hole − moving mirror II: Particle creation, in: 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Vol. 2 (2017), pp 1705–1708, arXiv: 1507.05048 [gr-qc]
71
Belyanin A., V. Kocharovsky V., Capasso F., Fry E., S. Zubairy M., O. Scully M.. Quantum electrodynamics of accelerated atoms in free space and in cavities. Phys. Rev. A, 2006, 74(2): 023807 https://doi.org/10.1103/PhysRevA.74.023807
72
O. Scully M.. Laser entropy: From lasers and masers to Bose condensates and black holes. Phys. Scr., 2020, 95: 024002
Carter B., G. McLenaghan R.. Generalized total angular momentum operator for the Dirac equation in curved space-time. Phys. Rev. D, 1979, 19(4): 1093 https://doi.org/10.1103/PhysRevD.19.1093
76
V. Shishkin G.. Some exact solutions of the Dirac equation in gravitational fields. Class. Quantum Gravity, 1991, 8(1): 175 https://doi.org/10.1088/0264-9381/8/1/017
77
Finster F.Reintjes M., The Dirac Equation and the Normalization of its Solutions in a Closed Friedmann−Robertson‒Walker Universe, Class. Quant. Grav. 26, 105021 (2009), arXiv: 0901.0602 [math-ph]
78
Collas P.Klein D., Dirac particles in a gravitational shock wave, Class. Quant. Grav. 35, 125006 (2018), arXiv: 1801.02756 [gr-qc]
Parker L., Vollick D., Redmount I.. Atomic spectra in the gravitational field of a collapsing prolate spheroid. Phys. Rev. D, 1997, 56(4): 2113 https://doi.org/10.1103/PhysRevD.56.2113
85
de A. Marques G., B. Bezerra V.. Hydrogen atom in the gravitational fields of topological defects. Phys. Rev. D, 2002, 66(10): 105011 https://doi.org/10.1103/PhysRevD.66.105011
86
H. Zhao Z., X. Liu Y., G. Li X.. Energy-level shifts of a stationary hydrogen atom in a static external gravitational field with Schwarzschild geometry. Phys. Rev. D, 2007, 76(6): 064016 https://doi.org/10.1103/PhysRevD.76.064016
87
Carvalho J., Furtado C., Moraes F.. Dirac oscillator interacting with a topological defect. Phys. Rev. A, 2011, 84(3): 032109 https://doi.org/10.1103/PhysRevA.84.032109
Lambiase G., Papini G., Scarpetta G.. Maximal acceleration corrections to the Lamb shift of hydrogen, deuterium and He+. Phys. Lett. A, 1998, 244(5): 349 https://doi.org/10.1016/S0375-9601(98)00364-8
Higuchi A., E. A. Matsas G., Sudarsky D.. Do static sources outside a Schwarzschild black hole radiate. Phys. Rev. D, 1997, 56(10): R6071 https://doi.org/10.1103/PhysRevD.56.R6071
93
C. B. Crispino L., R. Dolan S., S. Oliveira E.. Electromagnetic wave scattering by Schwarzschild black holes. Phys. Rev. Lett., 2009, 102(23): 231103 https://doi.org/10.1103/PhysRevLett.102.231103
94
F. B. Macedo C., C. S. Leite L., S. Oliveira E., R. Dolan S., C. B. Crispino L.. Absorption of planar massless scalar waves by Kerr black holes. Phys. Rev. D, 2013, 88(6): 064033 https://doi.org/10.1103/PhysRevD.88.064033
95
Cardoso V., Vicente R.. Moving black holes: Energy extraction, absorption cross section, and the ring of fire. Phys. Rev. D, 2019, 100(8): 084001 https://doi.org/10.1103/PhysRevD.100.084001
Martin-Martinez E.C. Menicucci N., Entanglement in curved spacetimes and cosmology, Class. Quant. Grav. 31, 214001 (2014), arXiv: 1408.3420 [quant-ph]
105
D. Birrell N.C. W. Davies P., Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press, 1984
106
Jacobson T., Introduction to quantum fields in curved space- time and the hawking effect, in: Lectures on Quantum Gravity, edited by A. Gomberoff and D. Marolf, Springer US, Boston, MA, 2005, pp 39–89
107
E. Parker L.Toms D., Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity, Cambridge Mono-graphs on Mathematical Physics, Cambridge: Cambridge University Press, 2009
108
M. Carroll S., Spacetime and Geometry, Cambridge: Cambridge University Press, 2019
109
Almheiri A.Marolf D.Polchinski J.Sully J., Black holes: Complementarity or firewalls? J. High Energy Phys. 02, 062 (2013), arXiv: 1207.3123 [hep-th]
110
D. Mathur S., The information paradox: A pedagogical introduction, Class. Quant. Grav. 26, 224001 (2009), arXiv: 0909.1038 [hep-th]
111
M. Wilson C., Johansson G., Pourkabirian A., Simoen M., R. Johansson J., Duty T., Nori F., Delsing P.. Observation of the dynamical Casimir effect in a superconducting circuit. Nature, 2011, 479(7373): 376 https://doi.org/10.1038/nature10561
112
Lähteenmäki P., S. Paraoanu G., Hassel J., J. Hakonen P.. Dynamical Casimir effect in a Josephson metamaterial. Proc. Natl. Acad. Sci. USA, 2013, 110(11): 4234 https://doi.org/10.1073/pnas.1212705110
113
C. Jaskula J., B. Partridge G., Bonneau M., Lopes R., Ruaudel J., Boiron D., I. Westbrook C.. Acoustic analog to the dynamical Casimir effect in a Bose‒Einstein condensate. Phys. Rev. Lett., 2012, 109(22): 220401 https://doi.org/10.1103/PhysRevLett.109.220401
114
T. Jaekel M.Reynaud S., Movement and fluctuations of the vacuum, Rep. Prog. Phys. 60, 863 (1997), arXiv: quant-ph/9706035
Nicolai E. XIX. On a dynamical illustration of the pressure of radiation, Lond. Edinb. Dublin Philos. Mag. J. Sci. 49(289), 171 (1925)
117
E. Lamb W., C. Retherford R.. Fine structure of the hydrogen atom by a microwave method. Phys. Rev., 1947, 72(3): 241 https://doi.org/10.1103/PhysRev.72.241
118
A. Welton T.. Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field. Phys. Rev., 1948, 74(9): 1157 https://doi.org/10.1103/PhysRev.74.1157
119
R. Ackerhalt J., L. Knight P., H. Eberly J.. Radiation reaction and radiative frequency shifts. Phys. Rev. Lett., 1973, 30(10): 456 https://doi.org/10.1103/PhysRevLett.30.456
120
W. Milonni P., R. Ackerhalt J., A. Smith W.. Interpretation of radiative corrections in spontaneous emission. Phys. Rev. Lett., 1973, 31(15): 958 https://doi.org/10.1103/PhysRevLett.31.958
121
Audretsch J., Müller R.. Spontaneous excitation of an accelerated atom: The contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A, 1994, 50(2): 1755 https://doi.org/10.1103/PhysRevA.50.1755
122
Dalibard J., Dupont-Roc J., Cohen-Tannoudji C.. Vacuum fluctuations and radiation reaction: Identification of their respective contributions. J. Phys. (Paris), 1982, 43(11): 1617 https://doi.org/10.1051/jphys:0198200430110161700
123
Dalibard J., Dupont-Roc J., Cohen-Tannoudji C.. Dynamics of a small system coupled to a reservoir: Reservoir fluctuations and self-reaction. J. Phys. (Paris), 1984, 45(4): 637 https://doi.org/10.1051/jphys:01984004504063700
124
Hawking S.Israel W., General Relativity: An Einstein Centenary Survey, 2010
125
Zhu Z., W. Yu H., Lu S.. Spontaneous excitation of an accelerated hydrogen atom coupled with electromagnetic vacuum fluctuations. Phys. Rev. D, 2006, 73(10): 107501 https://doi.org/10.1103/PhysRevD.73.107501
126
Chen J., Hu J., Yu H.. Spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations. Ann. Phys., 2015, 353: 317 https://doi.org/10.1016/j.aop.2014.12.003
127
Zhou W.. Is the Fulling–Davies–Unruh effect valid for the case of an atom coupled to quantum electromagnetic field. Mod. Phys. Lett. A, 2016, 31(34): 1650189 https://doi.org/10.1142/S0217732316501893
128
Zhou W., Yu H.. Spontaneous excitation of a uniformly accelerated atom coupled to vacuum Dirac field fluctuations. Phys. Rev. A, 2012, 86(3): 033841 https://doi.org/10.1103/PhysRevA.86.033841
Zhang A.. The formalism for energy changing rate of an accelerated atom coupled with electromagnetic vacuum fluctuations. Found. Phys., 2016, 46(9): 1199 https://doi.org/10.1007/s10701-016-0016-9
Barton G., Calogeracos A.. Acceleration-induced radiative excitation of ground-state atoms. J. Phys. A Math. Theor., 2008, 41(16): 164030 https://doi.org/10.1088/1751-8113/41/16/164030
134
Calogeracos A.. Spontaneous excitation of an accelerated atom: (i) Acceleration of infinite duration (the Unruh effect), (ii) acceleration of finite duration. Results Phys., 2016, 6: 377 https://doi.org/10.1016/j.rinp.2016.05.008
135
M. Raimond J., Brune M., Haroche S.. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 2001, 73(3): 565 https://doi.org/10.1103/RevModPhys.73.565
J. G. Dueñas, G. Menezes , N. F. Svaiter. E. Arias, Boundary effects on radiative processes of two entangled atoms, J. High Energy Phys. 07, 147 (2016), arXiv: 1510.00047 [quant-ph]
139
Zhang C., Zhou W.. Radiative processes of two accelerated entangled atoms near boundaries. Symmetry (Basel), 2019, 11(12): 1515 https://doi.org/10.3390/sym11121515
140
Menezes G., F. Svaiter N.. Vacuum fluctuations and radiation reaction in radiative processes of entangled states. Phys. Rev. A, 2015, 92(6): 062131 https://doi.org/10.1103/PhysRevA.92.062131
141
Zhou W., Yu H.. Radiation-reaction-induced transitions of two maximally entangled atoms in noninertial motion. Phys. Rev. D, 2020, 101(2): 025009 https://doi.org/10.1103/PhysRevD.101.025009
142
Zhou W., Yu H.. Collective transitions of two entangled atoms and the Fulling‒Davies‒Unruh effect. Phys. Rev. D, 2020, 101(8): 085009 https://doi.org/10.1103/PhysRevD.101.085009
Passante R.. Radiative level shifts of an accelerated hydrogen atom and the Unruh effect in quantum electrodynamics. Phys. Rev. A, 1998, 57(3): 1590 https://doi.org/10.1103/PhysRevA.57.1590
145
Rizzuto L., Spagnolo S.. Lamb shift of a uniformly accelerated hydrogen atom in the presence of a conducting plate. Phys. Rev. A, 2009, 79(6): 062110 https://doi.org/10.1103/PhysRevA.79.062110
146
Audretsch J.Mueller R.Holzmann M., Generalized Unruh effect and Lamb shift for atoms on arbitrary stationary trajectories, Class. Quant. Grav. 12, 2927 (1995), arXiv: quant-ph/9510025
P. Marzlin K., Audretsch J.. States insensitive to the Unruh effect in multilevel detectors. Phys. Rev. D, 1998, 57(2): 1045 https://doi.org/10.1103/PhysRevD.57.1045
149
Audretsch J., P. Marzlin K.. Ramsey fringes in atomic interferometry: Measurability of the influence of space-time curvature. Phys. Rev. A, 1994, 50(3): 2080 https://doi.org/10.1103/PhysRevA.50.2080
Brax P., C. Davis A., Elder B., K. Wong L.. Constraining screened fifth forces with the electron magnetic moment. Phys. Rev. D, 2018, 97(8): 084050 https://doi.org/10.1103/PhysRevD.97.084050
154
O. Sabulsky D., Dutta I., A. Hinds E., Elder B., Burrage C., J. Copeland E.. Experiment to detect dark energy forces using atom interferometry. Phys. Rev. Lett., 2019, 123(6): 061102 https://doi.org/10.1103/PhysRevLett.123.061102
Higuchi A., E. A. Matsas G., Sudarsky D.. Interaction of Hawking radiation with static sources outside a Schwarzschild black hole. Phys. Rev. D, 1998, 58(10): 104021 https://doi.org/10.1103/PhysRevD.58.104021
159
C. B. Crispino L.Higuchi A.E. A. Matsas G., Quantization of the electromagnetic field outside static black holes and its application to low-energy phenomena, Phys. Rev. D 63, 124008 (2001), arXiv: gr-qc/0011070 [Erratum: Phys. Rev. D 80, 029906 (2009)]
160
Castineiras J., P. Costa e Silva I., E. A. Matsas G.. Do static sources respond to massive scalar particles from the Hawking radiation as uniformly accelerated ones do in the inertial vacuum. Phys. Rev. D, 2003, 67(6): 067502 https://doi.org/10.1103/PhysRevD.67.067502
W. Yu H., Zhou W.. Do static atoms outside a Schwarzschild black hole spontaneously excite. Phys. Rev. D, 2007, 76(4): 044023 https://doi.org/10.1103/PhysRevD.76.044023
164
Zhou W.Yu H., Spontaneous excitation of a static multilevel atom coupled with electromagnetic vacuum fluctuations in Schwarzschild spacetime, Class. Quant. Grav. 29, 085003 (2012), arXiv: 1203.5867 [gr-qc]
165
W. Yu H., Zhou W.. Relationship between Hawking radiation from black holes and spontaneous excitation of atoms. Phys. Rev. D, 2007, 76(2): 027503 https://doi.org/10.1103/PhysRevD.76.027503
Menezes G.. Radiative processes of two entangled atoms outside a Schwarzschild black hole. Phys. Rev. D, 2016, 94(10): 105008 https://doi.org/10.1103/PhysRevD.94.105008
168
Chen Y., Hu J., Yu H.. Collective transitions of two entangled atoms near a Schwarzschild black hole. Phys. Rev. D, 2023, 107(2): 025015 https://doi.org/10.1103/PhysRevD.107.025015
169
Yu H., W. Yu H., Zhu Z.. Spontaneous absorption of an accelerated hydrogen atom near a conducting plane in vacuum. Phys. Rev. D, 2006, 74(4): 044032 https://doi.org/10.1103/PhysRevD.74.044032
170
Visser M., The Kerr spacetime: A brief introduction, in: Kerr fest: Black holes in astrophysics, general relativity and quantum gravity, 2007, arXiv: 0706.0622 [gr-qc]
Menezes G., Spontaneous excitation of an atom in a Kerr spacetime, Phys. Rev. D 95, 065015 (2017), arXiv: 1611.00056 [gr-qc] [Erratum: Phys. Rev. D 97, 029901 (2018)]
173
P. Frolov V., S. Thorne K.. Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole. Phys. Rev. D, 1989, 39(8): 2125 https://doi.org/10.1103/PhysRevD.39.2125
174
C. Ottewill A., Winstanley E.. Renormalized stress tensor in Kerr space-time: General results. Phys. Rev. D, 2000, 62(8): 084018 https://doi.org/10.1103/PhysRevD.62.084018
175
A. Starobinskii A.. Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”. Sov. Phys. JETP, 1973, 64: 48
L. Matacz A., C. W. Davies P., C. Ottewill A.. Quantum vacuum instability near rotating stars. Phys. Rev. D, 1993, 47(4): 1557 https://doi.org/10.1103/PhysRevD.47.1557
Liu X., Tian Z., Wang J., Jing J.. Radiative process of two entanglement atoms in de Sitter spacetime. Phys. Rev. D, 2018, 97(10): 105030 https://doi.org/10.1103/PhysRevD.97.105030
Meschede D., Jhe W., A. Hinds E.. Radiative properties of atoms near a conducting plane: An old problem in a new light. Phys. Rev. A, 1990, 41(3): 1587 https://doi.org/10.1103/PhysRevA.41.1587
182
W. Gibbons G., W. Hawking S.. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D, 1977, 15(10): 2738 https://doi.org/10.1103/PhysRevD.15.2738
Zhou W.Yu H., Can spacetime curvature induced corrections to Lamb shift be observable? J. High Energy Phys. 10, 172 (2012), arXiv: 1204.2015 [gr-qc]
185
Cheng S., Hu J., Yu H.. Spontaneous excitation of an accelerated atom coupled with quantum fluctuations of spacetime. Phys. Rev. D, 2019, 100(2): 025010 https://doi.org/10.1103/PhysRevD.100.025010
186
Cai H., Ren Z.. Radiative properties of an inertial multilevel atom in a compactified Minkowski spacetime. Class. Quantum Gravity, 2019, 36(16): 165001 https://doi.org/10.1088/1361-6382/ab30d0
Chen Y., Hu J., Yu H.. Entanglement generation for uniformly accelerated atoms assisted by environment-induced interatomic interaction and the loss of the anti-Unruh effect. Phys. Rev. D, 2022, 105(4): 045013 https://doi.org/10.1103/PhysRevD.105.045013
189
Zhou Y.Hu J.Yu H., Entanglement dynamics for Unruh‒DeWitt detectors interacting with massive scalar fields: The Unruh and anti-Unruh effects, J. High Energy Phys. 09, 088 (2021), arXiv: 2105.14735 [gr-qc]
190
S. Soares M., Menezes G., F. Svaiter N.. Entanglement dynamics: Generalized master equation for uniformly accelerated two-level systems. Phys. Rev. A, 2022, 106(6): 062440 https://doi.org/10.1103/PhysRevA.106.062440
191
Hu J.Yu H., Entanglement generation outside a Schwarzschild black hole and the Hawking effect, J. High Energy Phys. 08, 137 (2011), arXiv: 1109.0335 [hep-th]
Huang Z.. Quantum entanglement for atoms coupling to fluctuating electromagnetic field in the cosmic string spacetime. Quantum Inform. Process., 2021, 20(5): 173 https://doi.org/10.1007/s11128-021-03119-8
194
Liu X.Tian Z.Jing J., Entanglement dynamics in κ-deformed spacetime, arXiv: 2309.08135 [hep-th] (2023)
195
Kukita S.Nambu Y., Entanglement dynamics in de Sitter spacetime, Class. Quant. Grav. 34, 235010 (2017), arXiv: 1706.09175 [gr-qc]
196
Yan J.Zhang B., Effect of spacetime dimensions on quantum entanglement between two uniformly accelerated atoms, J. High Energy Phys. 10, 051 (2022), arXiv: 2206.13681 [gr-qc]
197
Yan J.Zhang B.Cai Q., Reveal the lost entanglement for accelerated atoms in the high-dimensional spacetime, arXiv: 2311.04610 [hep-th] (2023)
Salam A.. Molecular quantum electrodynamics in the Heisenberg picture: A field theoretic viewpoint. Int. Rev. Phys. Chem., 2008, 27(3): 405 https://doi.org/10.1080/01442350802045206
200
Fassioli F., Olaya-Castro A.. Distribution of entanglement in light-harvesting complexes and their quantum efficiency. New J. Phys., 2010, 12(8): 085006 https://doi.org/10.1088/1367-2630/12/8/085006
Galego J., Climent C., J. Garcia-Vidal F., Feist J.. Cavity Casimir‒Polder forces and their effects in ground-state chemical reactivity. Phys. Rev. X, 2019, 9(2): 021057 https://doi.org/10.1103/PhysRevX.9.021057
203
Fiscelli G., Rizzuto L., Passante R.. Dispersion interaction between two hydrogen atoms in a static electric field. Phys. Rev. Lett., 2020, 124(1): 013604 https://doi.org/10.1103/PhysRevLett.124.013604
204
L. Andrews D., P. Craig D., Thirunamachandran T.. Molecular quantum electrodynamics in chemical physics. Int. Rev. Phys. Chem., 1989, 8(4): 339 https://doi.org/10.1080/01442358909353233
205
B. Casimir H., Polder D.. The influence of retardation on the London-van der Waals forces. Phys. Rev., 1948, 73(4): 360 https://doi.org/10.1103/PhysRev.73.360
206
F. Babb J., in: Advances in Atomic, Molecular, and Optical Physics, Elsevier, 2010, pp 1–20
Zhang J., Yu H.. Far-zone interatomic Casimir‒Polder potential between two ground-state atoms outside a Schwarzschild black hole. Phys. Rev. A, 2013, 88(6): 064501 https://doi.org/10.1103/PhysRevA.88.064501
209
Noto A.Passante R., van der Waals interaction energy between two atoms moving with uniform acceleration, Phys. Rev. D 88(2), 025041 (2013)
210
Marino J., Noto A., Passante R.. Thermal and nonthermal signatures of the Unruh effect in Casimir‒Polder forces. Phys. Rev. Lett., 2014, 113(2): 020403 https://doi.org/10.1103/PhysRevLett.113.020403
211
Barton G.. Long-range Casimir‒Polder‒Feinberg‒Sucher intermolecular potential at nonzero temperature. Phys. Rev. A, 2001, 64(3): 032102 https://doi.org/10.1103/PhysRevA.64.032102
Hodgkinson L., Louko J., C. Ottewill A.. Static detectors and circular‒geodesic detectors on the Schwarzschild black hole. Phys. Rev. D, 2014, 89(10): 104002 https://doi.org/10.1103/PhysRevD.89.104002
215
Singha C.. Remarks on distinguishability of Schwarzschild spacetime and thermal Minkowski spacetime using Resonance Casimir–Polder interaction. Mod. Phys. Lett. A, 2019, 35(2): 1950356 https://doi.org/10.1142/S0217732319503565
216
Menezes G., Kiefer C., Marino J.. Thermal and nonthermal scaling of the Casimir‒Polder interaction in a black hole spacetime. Phys. Rev. D, 2017, 95(8): 085014 https://doi.org/10.1103/PhysRevD.95.085014
217
H. Ford L., P. Hertzberg M., Karouby J.. Quantum gravitational force between polarizable objects. Phys. Rev. Lett., 2016, 116(15): 151301 https://doi.org/10.1103/PhysRevLett.116.151301
218
Wu P., Hu J., Yu H.. Quantum correction to classical gravitational interaction between two polarizable objects. Phys. Lett. B, 2016, 763: 40 https://doi.org/10.1016/j.physletb.2016.10.025
Hu Y., Hu J., Yu H.. Quantum gravitational interaction between two objects induced by external gravitational radiation fields. Phys. Rev. D, 2020, 101(6): 066015 https://doi.org/10.1103/PhysRevD.101.066015
222
Zhou W., Cheng S., Yu H.. Interatomic interaction of two ground-state atoms in vacuum: Contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A, 2021, 103(1): 012227 https://doi.org/10.1103/PhysRevA.103.012227
223
Cheng S., Zhou W., Yu H.. Probing long-range properties of vacuum altered by uniformly accelerating two spatially separated Unruh‒DeWitt detectors. Phys. Lett. B, 2022, 834: 137440 https://doi.org/10.1016/j.physletb.2022.137440
224
Zhou W., Cheng S., Yu H.. Understanding thermal nature of de Sitter spacetime via inter-detector interaction. Phys. Lett. B, 2023, 844: 138097 https://doi.org/10.1016/j.physletb.2023.138097
O. Scully M., S. Fry E., H. R. Ooi C., Wódkiewicz K.. Directed spontaneous emission from an extended ensemble of N atoms: Timing is everything. Phys. Rev. Lett., 2006, 96(1): 010501 https://doi.org/10.1103/PhysRevLett.96.010501
227
H. Raymond Ooi C., Rostovtsev Y., O. Scully M.. Two-photon correlation of radiation emitted by two excited atoms: Detailed analysis of a Dicke problem. Laser Phys., 2007, 17(7): 956 https://doi.org/10.1134/S1054660X07070092
Juzeliūnas G.L. Andrews D., Quantum electrodynamics of resonance energy transfer, in: Advances in Chemical Physics, John Wiley & Sons, 2000, pp 357–410
K. Brennen G., H. Deutsch I., S. Jessen P.. Entangling dipole‒dipole interactions for quantum logic with neutral atoms. Phys. Rev. A, 2000, 61(6): 062309 https://doi.org/10.1103/PhysRevA.61.062309
W. Milonni P., M. H. Rafsanjani S.. Distance dependence of two-atom dipole interactions with one atom in an excited state. Phys. Rev. A, 2015, 92(6): 062711 https://doi.org/10.1103/PhysRevA.92.062711
234
Donaire M., Guérout R., Lambrecht A.. Quasiresonant van der Waals interaction between nonidentical atoms. Phys. Rev. Lett., 2015, 115(3): 033201 https://doi.org/10.1103/PhysRevLett.115.033201
235
D. Jentschura U., M. Adhikari C., Debierre V.. Virtual resonant emission and oscillatory long-range tails in van der Waals interactions of excited states: QED treatment and applications. Phys. Rev. Lett., 2017, 118(12): 123001 https://doi.org/10.1103/PhysRevLett.118.123001
236
Rizzuto L., Lattuca M., Marino J., Noto A., Spagnolo S., Zhou W., Passante R.. Nonthermal effects of acceleration in the resonance interaction between two uniformly accelerated atoms. Phys. Rev. A, 2016, 94(1): 012121 https://doi.org/10.1103/PhysRevA.94.012121
237
Zhou W., Passante R., Rizzuto L.. Resonance interaction energy between two accelerated identical atoms in a coaccelerated frame and the Unruh effect. Phys. Rev. D, 2016, 94(10): 105025 https://doi.org/10.1103/PhysRevD.94.105025
238
Zhou W., Passante R., Rizzuto L.. Resonance dipole–dipole interaction between two accelerated atoms in the presence of a reflecting plane boundary. Symmetry (Basel), 2018, 10(6): 185 https://doi.org/10.3390/sym10060185
Zhou W., Yu H.. Boundarylike behaviors of the resonance interatomic energy in a cosmic string spacetime. Phys. Rev. D, 2018, 97(4): 045007 https://doi.org/10.1103/PhysRevD.97.045007
241
D. Nation P., R. Johansson J., P. Blencowe M., Nori F.. Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys., 2012, 84(1): 1 https://doi.org/10.1103/RevModPhys.84.1
F. Mundarain D., A. Maia Neto P.. Quantum radiation in a plane cavity with moving mirrors. Phys. Rev. A, 1998, 57(2): 1379 https://doi.org/10.1103/PhysRevA.57.1379
244
A. R. Dalvit D., D. Mazzitelli F.. Creation of photons in an oscillating cavity with two moving mirrors. Phys. Rev. A, 1999, 59(4): 3049 https://doi.org/10.1103/PhysRevA.59.3049
245
T. Alves D., R. Granhen E., P. Pires W.. Quantum radiation reaction force on a one-dimensional cavity with two relativistic moving mirrors. Phys. Rev. D, 2010, 82(4): 045028 https://doi.org/10.1103/PhysRevD.82.045028
246
D. Fosco C., Giraldo A., D. Mazzitelli F.. Dynamical Casimir effect for semitransparent mirrors. Phys. Rev. D, 2017, 96(4): 045004 https://doi.org/10.1103/PhysRevD.96.045004
H. Brevik I., A. Milton K., D. Odintsov S., E. Osetrin K.. Dynamical Casimir effect and quantum cosmology. Phys. Rev. D, 2000, 62(6): 064005 https://doi.org/10.1103/PhysRevD.62.064005
251
Wittemer M., Hakelberg F., Kiefer P., P. Schröder J., Fey C., Schützhold R., Warring U., Schaetz T.. Phonon pair creation by inflating quantum fluctuations in an ion trap. Phys. Rev. Lett., 2019, 123(18): 180502 https://doi.org/10.1103/PhysRevLett.123.180502
A. Andreata M., V. Dodonov V.. Dynamics of entanglement between field modes in a one-dimensional cavity with a vibrating boundary. J. Opt. B, 2005, 7: S11 https://doi.org/10.1088/1464-4266/7/3/002
254
Cong W.Tjoa E.B. Mann R., Entanglement harvesting with moving mirrors, J. High Energy Phys. 06, 021 (2019), arXiv: 1810.07359 [quant-ph] [Erratum: J. High Energy Phys. 07, 051 (2019)]
255
S. Ben-Benjamin J., O. Scully M., A. Fulling S., M. Lee D., N. Page D., A. Svidzinsky A., S. Zubairy M., J. Duff M., Glauber R., P. Schleich W., G. Unruh W.. Unruh acceleration radiation revisited. Int. J. Mod. Phys. A, 2019, 34(28): 1941005 https://doi.org/10.1142/S0217751X19410057
256
A. Svidzinsky A., S. Ben-Benjamin J., A. Fulling S., N. Page D.. Excitation of an atom by a uniformly accelerated mirror through virtual transitions. Phys. Rev. Lett., 2018, 121(7): 071301 https://doi.org/10.1103/PhysRevLett.121.071301
A. Fulling S., H. Wilson J.. The equivalence principle at work in radiation from unaccelerated atoms and mirrors. Phys. Scr., 2019, 94(1): 014004 https://doi.org/10.1088/1402-4896/aaecaa
259
R. R. Good M., Quantized scalar fields under the influence of moving mirror and anisotropic curved spacetime, Ph. D. thesis, North Carolina University, 2011
Haro J., Elizalde E.. Black hole collapse simulated by vacuum fluctuations with a moving semitransparent mirror. Phys. Rev. D, 2008, 77(4): 045011 https://doi.org/10.1103/PhysRevD.77.045011
262
Nicolaevici N.. Semitransparency effects in the moving mirror model for Hawking radiation. Phys. Rev. D, 2009, 80(12): 125003 https://doi.org/10.1103/PhysRevD.80.125003
R. R. Good M., R. Anderson P., R. Evans C.. Time dependence of particle creation from accelerating mirrors. Phys. Rev. D, 2013, 88(2): 025023 https://doi.org/10.1103/PhysRevD.88.025023
R. R. Good M., V. Linder E.. Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect. Phys. Rev. D, 2017, 96(12): 125010 https://doi.org/10.1103/PhysRevD.96.125010
267
R. R. Good M., V. Linder E., Wilczek F.. Finite thermal particle creation of Casimir light. Mod. Phys. Lett. A, 2020, 35(3): 2040006 https://doi.org/10.1142/S0217732320400064
268
Mintz B., Farina C., A. Maia Neto P., B. Rodrigues R.. Particle creation by a moving boundary with a Robin boundary condition. J. Phys. Math. Gen., 2006, 39(36): 11325 https://doi.org/10.1088/0305-4470/39/36/013
Golestanian R., Kardar M.. Path-integral approach to the dynamic Casimir effect with fluctuating boundaries. Phys. Rev. A, 1998, 58(3): 1713 https://doi.org/10.1103/PhysRevA.58.1713
R. Galley C., O. Behunin R., L. Hu B.. Oscillator-field model of moving mirrors in quantum optomechanics. Phys. Rev. A, 2013, 87(4): 043832 https://doi.org/10.1103/PhysRevA.87.043832
275
Wang Q., G. Unruh W.. Motion of a mirror under infinitely fluctuating quantum vacuum stress. Phys. Rev. D, 2014, 89(8): 085009 https://doi.org/10.1103/PhysRevD.89.085009
Sorge F.. Casimir effect in a weak gravitational field: Schwinger’s approach. Class. Quantum Gravity, 2019, 36(23): 235006 https://doi.org/10.1088/1361-6382/ab4def
281
C. Celeri L.Pascoal F.H. Y. Moussa M., Action of the gravitational field on the dynamical Casimir effect, Class. Quant. Grav. 26, 105014 (2009), arXiv: 0809.3706 [quant-ph]
282
Rätzel D., Schneiter F., Braun D., Bravo T., Howl R., P. E. Lock M., Fuentes I.. Frequency spectrum of an optical resonator in a curved spacetime. New J. Phys., 2018, 20(5): 053046 https://doi.org/10.1088/1367-2630/aac0ac
H. Wilson J., Sorge F., A. Fulling S.. Tidal and nonequilibrium Casimir effects in free fall. Phys. Rev. D, 2020, 101(6): 065007 https://doi.org/10.1103/PhysRevD.101.065007
285
Fagnocchi S., Finazzi S., Liberati S., Kormos M., Trombettoni A.. Relativistic Bose–Einstein condensates: A new system for analogue models of gravity. New J. Phys., 2010, 12(9): 095012 https://doi.org/10.1088/1367-2630/12/9/095012
286
Friis N., R. Lee A., Louko J.. Scalar, spinor, and photon fields under relativistic cavity motion. Phys. Rev. D, 2013, 88(6): 064028 https://doi.org/10.1103/PhysRevD.88.064028
287
P. C. M. Lima A.Alencar G.R. Muniz C. R. Landim R., Null second order corrections to Casimir energy in weak gravitational field, J. Cosmol. Astropart. Phys. 07, 011 (2019), arXiv: 1903.00512 [hep-th]
288
O. Scully M.V. Kocharovsky V.Belyanin A. Fry E.Capasso F., Enhancing acceleration radiation from ground-state atoms via cavity quantum electrodynamics, Phys. Rev. Lett. 91, 243004 (2003), arXiv: quant-ph/0305178
289
P. Dolan B., Hunter-McCabe A., Twamley J.. Shaking photons from the vacuum: Acceleration radiation from vibrating atoms. New J. Phys., 2020, 22(3): 033026 https://doi.org/10.1088/1367-2630/ab7bd5
R. R. Good M., Reflections on a black mirror, in: 2nd LeCosPA Symposium: Everything about Gravity, Celebrating the Centenary of Einstein’s General Relativity, 2016, arXiv: 1602.00683 [gr-qc]
R. R. Good M., Zhakenuly A., V. Linder E.. Mirror at the edge of the universe: Reflections on an accelerated boundary correspondence with de Sitter cosmology. Phys. Rev. D, 2020, 102(4): 045020 https://doi.org/10.1103/PhysRevD.102.045020
Alfaro V., Fubini S., Furlan G.. Conformal invariance in quantum mechanics. Nuovo Cimento A Serie, 1976, 34: 569 https://doi.org/10.1007/BF02785666
296
E. Camblong H., R. Ordonez C.. Black hole thermodynamics from near-horizon conformal quantum mechanics. Phys. Rev. D, 2005, 71(10): 104029 https://doi.org/10.1103/PhysRevD.71.104029
297
E. Camblong H., R. Ordonez C.. Semiclassical methods in curved spacetime and black hole thermodynamics. Phys. Rev. D, 2005, 71(12): 124040 https://doi.org/10.1103/PhysRevD.71.124040
298
E. Camblong H., Chakraborty A., R. Ordonez C.. Near-horizon aspects of acceleration radiation by free fall of an atom into a black hole. Phys. Rev. D, 2020, 102(8): 085010 https://doi.org/10.1103/PhysRevD.102.085010
299
Azizi A.E. Camblong H.Chakraborty A.R. Ordonez C.O. Scully M., Quantum optics meets black hole thermodynamics via conformal quantum mechanics: I. Master equation for acceleration radiation, Phys. Rev. D 104, 084086 (2021), arXiv: 2108.07570 [gr-qc]
300
Azizi A.E. Camblong H.Chakraborty A.R. Ordonez C.O. Scully M., Quantum optics meets black hole thermodynamics via conformal quantum mechanics: II. Thermodynamics of acceleration radiation, Phys. Rev. D 104, 084085 (2021), arXiv: 2108.07572 [gr-qc]
301
M. Maldacena J.Seiberg N., Flux-vacua in two dimensional string theory, J. High Energy Phys. 09, 077 (2005), arXiv: hep-th/0506141
Maitra M., Maity D., R. Majhi B.. Near horizon symmetries, emergence of Goldstone modes and thermality. Eur. Phys. J. Plus, 2020, 135(6): 483 https://doi.org/10.1140/epjp/s13360-020-00451-3
R. Kane G.R. Majhi B., Thermality of horizon through near horizon instability: A path integral approach, arXiv: 2210.04056 [gr-qc] (2022)
309
Chatterjee R., Gangopadhyay S., S. Majumdar A.. Violation of equivalence in an accelerating atom-mirror system in the generalized uncertainty principle framework. Phys. Rev. D, 2021, 104(12): 124001 https://doi.org/10.1103/PhysRevD.104.124001
310
Sen S., Mandal R., Gangopadhyay S.. Equivalence principle and HBAR entropy of an atom falling into a quantum corrected black hole. Phys. Rev. D, 2022, 105(8): 085007 https://doi.org/10.1103/PhysRevD.105.085007
311
Chakraborty K., R. Majhi B.. Detector response along null geodesics in black hole spacetimes and in a Friedmann‒Lemaitre‒Robertson‒Walker universe. Phys. Rev. D, 2019, 100(4): 045004 https://doi.org/10.1103/PhysRevD.100.045004
312
M. A. S. Bukhari S.G. Wang L., Seeing dark matter via acceleration radiation, arXiv: 2309.11958 [gr-qc] (2023)
Visser M., Thermality of the Hawking flux, J. High Energy Phys. 07, 009 (2015), arXiv: 1409.7754 [gr-qc]
315
H. Ma Y., Y. Cai Q., Dong H., P. Sun C.. Non-thermal radiation of black holes off canonical typicality. EPL, 2018, 122(3): 30001 https://doi.org/10.1209/0295-5075/122/30001
316
Kastor D.H. Traschen J., Particle production and positive energy theorems for charged black holes in de Sitter, Class. Quant. Grav. 13, 2753 (1996), arXiv: gr-qc/9311025
Qiu Y.Traschen J., Black hole and cosmological particle production in Schwarzschild de Sitter, Class. Quant. Grav. 37, 135012 (2020), arXiv: 1908.02737 [hep-th]
319
M. A. S. Bukhari S., A. Bhat I., Xu C., G. Wang L.. Nonthermal acceleration radiation of atoms near a black hole in presence of dark energy. Phys. Rev. D, 2023, 107(10): 105017 https://doi.org/10.1103/PhysRevD.107.105017
320
D. Bartlett S., Rudolph T., W. Spekkens R.. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys., 2007, 79(2): 555 https://doi.org/10.1103/RevModPhys.79.555
J. Summers S., Werner R.. Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun. Math. Phys., 1987, 110(2): 247 https://doi.org/10.1007/BF01207366
Salton G., B. Mann R., C. Menicucci N.. Acceleration-assisted entanglement harvesting and rangefinding. New J. Phys., 2015, 17(3): 035001 https://doi.org/10.1088/1367-2630/17/3/035001
Liu Z., Zhang J., Yu H.. Entanglement harvesting of accelerated detectors versus static ones in a thermal bath. Phys. Rev. D, 2023, 107(4): 045010 https://doi.org/10.1103/PhysRevD.107.045010
328
Bozanic L., Naeem M., Gallock-Yoshimura K., B. Mann R.. Correlation harvesting between particle detectors in uniform motion. Phys. Rev. D, 2023, 108(10): 105017 https://doi.org/10.1103/PhysRevD.108.105017
Liu Z.Zhang J.Yu H., Entanglement harvesting in the presence of a reflecting boundary, J. High Energy Phys. 08, 020 (2021), arXiv: 2101.00114 [quant-ph]
331
Ye Y., Yu H., Hu J.. Entanglement generation and protection for two atoms in the presence of two parallel mirrors. Commum. Theor. Phys., 2021, 73(6): 065104 https://doi.org/10.1088/1572-9494/abf03d
332
Liu Z.Zhang J.Yu H., Harvesting correlations from vacuum quantum fields in the presence of a reflecting boundary, J. High Energy Phys. 11, 184 (2023), arXiv: 2310.07164 [quant-ph]
333
Li R.Zhao Z., Entanglement harvesting of circularly accelerated detectors with a reflecting boundary, arXiv: 2401.16018 [quant-ph] (2024)
334
Barman D., R. Majhi B.. Are multiple reflecting boundaries capable of enhancing entanglement harvesting. Phys. Rev. D, 2023, 108(8): 085007 https://doi.org/10.1103/PhysRevD.108.085007
335
Ji Y.Zhang J. Yu H., Entanglement harvesting in cosmic string spacetime, arXiv: 2401.13406 [quant-ph] (2024)
336
Martin-Martinez E., R. H. Smith A., R. Terno D.. Spacetime structure and vacuum entanglement. Phys. Rev. D, 2016, 93(4): 044001 https://doi.org/10.1103/PhysRevD.93.044001
337
Hu H.Zhang J. Yu H., Harvesting entanglement by non-identical detectors with different energy gaps, J. High Energy Phys. 05, 112 (2022), arXiv: 2204.01219 [quant-ph]
338
Cong W.Qian C.R. R. Good M.B. Mann R., Effects of horizons on entanglement harvesting, J. High Energy Phys. 10, 067 (2020), arXiv: 2006.01720 [gr-qc]
339
J. Henderson L.A. Hennigar R.B. Mann R. R. H. Smith A.Zhang J., Harvesting entanglement from the black hole vacuum, Class. Quant. Grav. 35, 21LT02 (2018), arXiv: 1712.10018 [quant-ph]
340
A. G. A. Caribé J., H. Jonsson R., Casals M., Kempf A., Martín-Martínez E.. Lensing of vacuum entanglement near Schwarzschild black holes. Phys. Rev. D, 2023, 108(2): 025016 https://doi.org/10.1103/PhysRevD.108.025016
Bueley K., Huang L., Gallock-Yoshimura K., B. Mann R.. Harvesting mutual information from BTZ black hole spacetime. Phys. Rev. D, 2022, 106(2): 025010 https://doi.org/10.1103/PhysRevD.106.025010
343
Gallock-Yoshimura K., Tjoa E., B. Mann R.. Harvesting entanglement with detectors freely falling into a black hole. Phys. Rev. D, 2021, 104(2): 025001 https://doi.org/10.1103/PhysRevD.104.025001