1. State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China 2. College of Physics and Electronic Engineering, and Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, China 3. Department of Physics, The University of Hong Kong, Hong Kong, China
We present a theoretical investigation of Majorana zero mode (MZM) assisted spin pumping which consists of a quantum dot (QD) and two normal leads. When the coupling between the MZM and the QD is absent, d.c. pure spin current can be excited by a rotating magnetic field where low energy spin down electrons are flipped to high energy spin up electrons by absorbing photons. However, when the coupling is turned on, the d.c. pure spin current vanishes, and an a.c. charge current emerges with its magnitude independent of the coupling strength. We reveal that this change is due to the formation of a highly localized MZM assisted topological Andreev state at the Fermi level, which allows only the injection of electron pairs with opposite spin into the QD. By absorbing or emitting photons, the electron pairs are separated to opposite spin electrons, and then return back to the lead again, generating an a.c. charge current without spin polarization. We demonstrate the switching from d.c. pure spin current to a.c. charge current based on both Kitaev model and a more realistic topological superconductor nanowire. Although this switching can also be induced by partially separated Andreev bound state (ps-ABS) in the topological trivial phase, it is extremely unstable and highly sensitive to the Zeeman field, which is different from the switching induced by MZM. Our result suggests that quantum spin pumping may be a feasible local transport method for detecting the presence of MZMs at the ends of a superconducting nanowire.
Culcer D. , C. Keser A. , Li Y. , Tkachov G. . Transport in two-dimensional topological materials: Recent developments in experiment and theory. 2D Mater., 2020, 7: 022007 https://doi.org/10.1088/2053-1583/ab6ff7
Aoki D. , P. Brison J. , Flouquet J. , Ishida K. , Knebel G. , Tokunaga Y. , Yanase Y. . Unconventional Superconductivity in UTe2. J. Phys.: Condens. Matter, 2022, 34(24): 243002 https://doi.org/10.1088/1361-648X/ac5863
10
K. Ghosh S. , Smidman M. , Shang T. , F. Annett J. , D. Hillier A. , Quintanilla J. , Q. Yuan H. . Recent progress on superconductors with time-reversal symmetry breaking. J. Phys.: Condens. Matter, 2021, 33(3): 033001 https://doi.org/10.1088/1361-648X/abaa06
11
Prada E. , San-Jose P. , W. A. de Moor M. , Geresdi A. , J. H. Lee E. , Klinovaja J. , Loss D. , Nygard J. , Aguado R. , P. Kouwenhoven L. . From Andreev to Majorana bound states in hybrid superconductor−semiconductor nanowires. Nat. Rev. Phys., 2020, 2(10): 575 https://doi.org/10.1038/s42254-020-0228-y
12
H. Wang Z. , Xu F. , Li L. , H. Xu D. , Wang B. . Topological superconductors and exact mobility edges in non-Hermitian quasicrystals. Phys. Rev. B, 2022, 105(2): 024514 https://doi.org/10.1103/PhysRevB.105.024514
13
H. Wang Z. , Xu F. , Li L. , H. Xu D. , Q. Chen W. , Wang B. . Majorana polarization in non-Hermitian topological superconductors. Phys. Rev. B, 2021, 103(13): 134507 https://doi.org/10.1103/PhysRevB.103.134507
Ran S. , Eckberg C. , P. Ding Q. , Furukawa Y. , Metz T. , R. Saha S. , L. Liu I. , Zic M. , Kim H. , Paglione J. , P. Butch N. . Nearly ferromagnetic spin-triplet superconductivity. Science, 2019, 365(6454): 684 https://doi.org/10.1126/science.aav8645
17
Novak M.Sasaki S.Kriener M.Segawa K.Ando Y., Unusual nature of fully gapped superconductivity in In-doped SnTe, Phys. Rev. B 88, 140502(R) (2013)
18
Fu L. , L. Kane C. . Superconducting proximity effect and majorana fermions at the surface of a topological insulator. Phys. Rev. Lett., 2008, 100(9): 096407 https://doi.org/10.1103/PhysRevLett.100.096407
19
M. Lutchyn R. , D. Sau J. , Das Sarma S. . Majorana fermions and a topological phase transition in semiconductor−superconductor heterostructures. Phys. Rev. Lett., 2010, 105(7): 077001 https://doi.org/10.1103/PhysRevLett.105.077001
Mourik V. , Zuo K. , M. Frolov S. , R. Plissard S. , P. A. M. Bakkers E. , P. Kouwenhoven L. . Signatures of Majorana fermions in hybrid superconductor−semiconductor nanowire devices. Science, 2012, 336(6084): 1003 https://doi.org/10.1126/science.1222360
22
Deng M. , Yu C. , Huang G. , Larsson M. , Caroff P. , Xu H. . Anomalous zero-bias conductance peak in a NbCInSb nanowire−Nb hybrid device. Nano Lett., 2012, 12(12): 6414 https://doi.org/10.1021/nl303758w
23
Das A. , Ronen Y. , Most Y. , Oreg Y. , Heiblum M. , Shtrikman H. . Zero-bias peaks and splitting in an AlCInAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys., 2012, 8(12): 887 https://doi.org/10.1038/nphys2479
24
P. Rokhinson L. , Liu X. , K. Furdyna J. . The fractional a.c. Josephson effect in a semiconductor−superconductor nanowire as a signature of Majorana particles. Nat. Phys., 2012, 8(11): 795 https://doi.org/10.1038/nphys2429
25
O. H. Churchill H. , Fatemi V. , Grove-Rasmussen K. , T. Deng M. , Caroff P. , Q. Xu H. , M. Marcus C. . Superconductor−nanowire devices from tunneling to the multichannel regime: Zero-bias oscillations and magnetoconductance crossover. Phys. Rev. B, 2013, 87(24): 241401 https://doi.org/10.1103/PhysRevB.87.241401
26
D. K. Finck A. , J. Van Harlingen D. , K. Mohseni P. , Jung K. , Li X. . Anomalous modulation of a zero-bias peak in a hybrid nanowire−superconductor device. Phys. Rev. Lett., 2013, 110(12): 126406 https://doi.org/10.1103/PhysRevLett.110.126406
27
M. Albrecht S. , P. Higginbotham A. , Madsen M. , Kuemmeth F. , S. Jespersen T. , Nygard J. , Krogstrup P. , M. Marcus C. . Exponential protection of zero modes in Majorana islands. Nature, 2016, 531(7593): 206 https://doi.org/10.1038/nature17162
28
Nadj-Perge S. , K. Drozdov I. , Li J. , Chen H. , Jeon S. , Seo J. , H. MacDonald A. , A. Bernevig B. , Yazdani A. . Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science, 2014, 346(6209): 602 https://doi.org/10.1126/science.1259327
29
Pawlak R. , Kisiel M. , Klinovaja J. , Meier T. , Kawai S. , Glatzel T. , Loss D. , Meyer E. . Probing atomic structure and Majorana wavefunctions in mono-atomic Fe chains on superconducting Pb surface. npj Quantum Inf., 2016, 2: 16035 https://doi.org/10.1038/npjqi.2016.35
30
H. Wang Z. , Xu F. , Li L. , H. Xu D. , Q. Chen W. , Wang B. , Guo H. . Spin−orbit proximity effect and topological superconductivity in graphene/transition-metal dichalcogenide nanoribbons. New J. Phys., 2021, 23(12): 123002 https://doi.org/10.1088/1367-2630/ac33f5
31
H. Wang Z. , Xu F. , Li L. , H. Xu D. , Q. Chen W. , Wang B. . Majorana polarization in non-Hermitian topological superconductors. Phys. Rev. B, 2021, 103(13): 134507 https://doi.org/10.1103/PhysRevB.103.134507
32
H. Wang Z. , Xu F. , Li L. , Lü R. , Wang B. , Q. Chen W. . One-dimensional topological superconductivity at the edges of twisted bilayer graphene nanoribbons. Phys. Rev. B, 2019, 100(9): 094531 https://doi.org/10.1103/PhysRevB.100.094531
P. Xu J. , X. Wang M. , L. Liu Z. , F. Ge J. , Yang X. , Liu C. , A. Xu Z. , Guan D. , L. Gao C. , Qian D. , Liu Y. , H. Wang Q. , C. Zhang F. , K. Xue Q. , F. Jia J. . Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator−superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett., 2015, 114(1): 017001 https://doi.org/10.1103/PhysRevLett.114.017001
35
DeGottardi W. , Sen D. , Vishveshwara S. . Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials. Phys. Rev. Lett., 2013, 110(14): 146404 https://doi.org/10.1103/PhysRevLett.110.146404
36
Adagideli I. , Wimmer M. , Teker A. . Effects of electron scattering on the topological properties of nanowires: Majorana fermions from disorder and superlattices. Phys. Rev. B, 2014, 89(14): 144506 https://doi.org/10.1103/PhysRevB.89.144506
37
Liu J. , C. Potter A. , T. Law K. , A. Lee P. . Zero-bias peaks in the tunneling conductance of spin−orbit-coupled superconducting wires with and without majorana end-states. Phys. Rev. Lett., 2012, 109(26): 267002 https://doi.org/10.1103/PhysRevLett.109.267002
38
I. Pikulin D.P. Dahlhaus J.Wimmer M.Schomerus H.W. J. Beenakker C., A zero-voltage conductance peak from weak antilocalization in a Majorana nanowire, New J. Phys. 14(12), 125011 (2012)
39
E. Liu D.U. Baranger H., Detecting a Majorana-fermion zero mode using a quantum dot, Phys. Rev. B 84, 201308(R) (2011)
40
Leijnse M.Flensberg K., Scheme to measure Majorana fermion lifetimes using a quantum dot, Phys. Rev. B 84, 140501(R) (2011)
41
Zhang H. , X. Liu C. , Gazibegovic S. , Xu D. , A. Logan J. , Wang G. , van Loo N. , D. S. Bommer J. , W. A. de Moor M. , Car D. , L. M. Op het Veld R. , J. van Veldhoven P. , Koelling S. , A. Verheijen M. , Pendharkar M. , J. Pennachio D. , Shojaei B. , S. Lee J. , J. Palmstrøm C. , P. A. M. Bakkers E. , D. Sarma S. , P. Kouwenhoven L. . Retracted article: Quantized Majorana conductance. Nature, 2018, 556(7699): 74 https://doi.org/10.1038/nature26142
42
Moore C. , D. Stanescu T. , Tewari S. . Two-terminal charge tunneling: Disentangling Majorana zero modes from partially separated Andreev bound states in semiconductor−superconductor heterostructures. Phys. Rev. B, 2018, 97(16): 165302 https://doi.org/10.1103/PhysRevB.97.165302
43
Moore C. , C. Zeng C. , D. Stanescu T. , Tewari S. . Quantized zero-bias conductance plateau in semiconductor−superconductor heterostructures without topological Majorana zero modes. Phys. Rev. B, 2018, 98(15): 155314 https://doi.org/10.1103/PhysRevB.98.155314
44
Mao Y. , F. Sun Q. . Charge and spin transport through a normal lead coupled to an s-wave superconductor and a Majorana zero mode. Phys. Rev. B, 2021, 103(11): 115411 https://doi.org/10.1103/PhysRevB.103.115411
45
K. Watson S. , M. Potok R. , M. Marcus C. , Umansky V. . Experimental realization of a quantum spin pump. Phys. Rev. Lett., 2003, 91(25): 258301 https://doi.org/10.1103/PhysRevLett.91.258301
46
Tserkovnyak Y. , Brataas A. , E. W. Bauer G. . Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett., 2002, 88(11): 117601 https://doi.org/10.1103/PhysRevLett.88.117601
47
Dushenko S. , Ago H. , Kawahara K. , Tsuda T. , Kuwabata S. , Takenobu T. , Shinjo T. , Ando Y. , Shiraishi M. . Gate-tunable spin-charge conversion and the role of spin−orbit interaction in graphene. Phys. Rev. Lett., 2016, 116(16): 166102 https://doi.org/10.1103/PhysRevLett.116.166102
48
Uchida K. , Adachi H. , An T. , Ota T. , Toda M. , Hillebrands B. , Maekawa S. , Saitoh E. . Long-range spin Seebeck effect and acoustic spin pumping. Nat. Mater., 2011, 10(10): 737 https://doi.org/10.1038/nmat3099
49
Weiler M. , Althammer M. , D. Czeschka F. , Huebl H. , S. Wagner M. , Opel M. , Imort I. , Reiss G. , Thomas A. , Gross R. , T. B. Goennenwein S. . Local charge and spin currents in magnetothermal landscapes. Phys. Rev. Lett., 2012, 108(10): 106602 https://doi.org/10.1103/PhysRevLett.108.106602
Mosendz O. , E. Pearson J. , Y. Fradin F. , E. W. Bauer G. , D. Bader S. , Hoffmann A. . Quantifying spin Hall angles from spin pumping: Experiments and theory. Phys. Rev. Lett., 2010, 104(4): 046601 https://doi.org/10.1103/PhysRevLett.104.046601
52
W. Sandweg C. , Kajiwara Y. , V. Chumak A. , A. Serga A. , I. Vasyuchka V. , B. Jungfleisch M. , Saitoh E. , Hillebrands B. . Spin pumping by parametrically excited exchange magnons. Phys. Rev. Lett., 2011, 106(21): 216601 https://doi.org/10.1103/PhysRevLett.106.216601
53
D. Czeschka F. , Dreher L. , S. Brandt M. , Weiler M. , Althammer M. , M. Imort I. , Reiss G. , Thomas A. , Schoch W. , Limmer W. , Huebl H. , Gross R. , T. B. Goennenwein S. . Scaling behavior of the spin pumping effect in ferromagnet-platinum bilayers. Phys. Rev. Lett., 2011, 107(4): 046601 https://doi.org/10.1103/PhysRevLett.107.046601
54
Dushenko S. , Koike M. , Ando Y. , Shinjo T. , Myronov M. , Shiraishi M. . Experimental demonstration of room-temperature spin transport in n-type germanium epilayers. Phys. Rev. Lett., 2015, 114(19): 196602 https://doi.org/10.1103/PhysRevLett.114.196602
55
Ando K. , Takahashi S. , Ieda J. , Kurebayashi H. , Trypiniotis T. , H. W. Barnes C. , Maekawa S. , Saitoh E. . Electrically tunable spin injector free from the impedance mismatch problem. Nat. Mater., 2011, 10(9): 655 https://doi.org/10.1038/nmat3052
56
Tang Z. , Shikoh E. , Ago H. , Kawahara K. , Ando Y. , Shinjo T. , Shiraishi M. . Dynamically generated pure spin current in single-layer graphene. Phys. Rev. B, 2013, 87(14): 140401 https://doi.org/10.1103/PhysRevB.87.140401
57
B. S. Mendes J. , Aparecido-Ferreira A. , Holanda J. , Azevedo A. , M. Rezende S. . Efficient spin to charge current conversion in the 2D semiconductor MoS2 by spin pumping from yttrium iron garnet. Appl. Phys. Lett., 2018, 112(24): 242407 https://doi.org/10.1063/1.5030643
58
A. Zvyagin A. . Longitudinal spin pumping and topological superconductivity: Search for Majorana edge states. Phys. Rev. B, 2014, 89(21): 214420 https://doi.org/10.1103/PhysRevB.89.214420
F. Becerra V. , Trif M. , Hyart T. . Quantized spin pumping in topological ferromagnetic-superconducting nanowires. Phys. Rev. Lett., 2023, 130(23): 237002 https://doi.org/10.1103/PhysRevLett.130.237002
Prada E. , Aguado R. , San-Jose P. . Measuring Majorana nonlocality and spin structure with a quantum dot. Phys. Rev. B, 2017, 96(8): 085418 https://doi.org/10.1103/PhysRevB.96.085418
64
M. Aksoy Ö. , R. Tolsma J. . Majorana zero modes in a quantum wire platform without Rashba spin−orbit coupling. Phys. Rev. B, 2020, 101(19): 195127 https://doi.org/10.1103/PhysRevB.101.195127
Dong B. , L. Cui H. , L. Lei X. . Pumped spin-current and shot-noise spectra of a single quantum dot. Phys. Rev. Lett., 2005, 94(6): 066601 https://doi.org/10.1103/PhysRevLett.94.066601
68
Matsuo M. , Ohnuma Y. , Kato T. , Maekawa S. . Spin current noise of the spin Seebeck effect and spin pumping. Phys. Rev. Lett., 2018, 120(3): 037201 https://doi.org/10.1103/PhysRevLett.120.037201
69
K. Watson S. , M. Potok R. , M. Marcus C. , Umansky V. . Experimental realization of a quantum spin pump. Phys. Rev. Lett., 2003, 91(25): 258301 https://doi.org/10.1103/PhysRevLett.91.258301