Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (6): 62201   https://doi.org/10.1007/s11467-024-1420-9
  本期目录
Influence of thermal effects on atomic Bloch oscillation
Guoling Yin1, Chi-Kin Lai2, Nana Chang2,3, Yi Liang2, Dekai Mao2, Xiaoji Zhou1,2,3()
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2. State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
3. Institute of Carbon-based Thin Film Electronics, Peking University, Taiyuan 030012, China
 全文: PDF(4180 KB)   HTML
Abstract

Advancements in the experimental toolbox of cold atoms have enabled the meticulous control of atomic Bloch oscillation (BO) within optical lattices, thereby enhancing the capabilities of gravity interferometers. This work delves into the impact of thermal effects on Bloch oscillation in 1D accelerated optical lattices aligned with gravity by varying the system’s initial temperature. Through the application of Raman cooling, we effectively reduce the longitudinal thermal effect, stabilizing the longitudinal coherence length over the timescale of its lifetime. The atomic losses over multiple Bloch periods are measured, which are primarily attributed to transverse excitation. Furthermore, we identify two distinct inverse scaling behaviors in the oscillation lifetime scaled by the corresponding density with respect to temperatures, implying diverse equilibrium processes within or outside the Bose−Einstein condensate (BEC) regime. The competition between the system’s coherence and atomic density leads to a relatively smooth variation in the actual lifetime versus temperature. Our findings provide valuable insights into the interaction between thermal effects and BO, offering avenues for the refinement of quantum measurement technologies.

Key wordsBloch oscillation    optical lattice    thermal effects    cold atoms    Raman cooling
收稿日期: 2024-02-23      出版日期: 2024-05-24
Corresponding Author(s): Xiaoji Zhou   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(6): 62201.
Guoling Yin, Chi-Kin Lai, Nana Chang, Yi Liang, Dekai Mao, Xiaoji Zhou. Influence of thermal effects on atomic Bloch oscillation. Front. Phys. , 2024, 19(6): 62201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-024-1420-9
https://academic.hep.com.cn/fop/CN/Y2024/V19/I6/62201
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Bloch F., Über die quantenmechanik der elektronen in kristallgittern, Eur. Phys. J. A 52(7–8), 555 (1929)
2 Zener C., A theory of the electrical breakdown of solid dielectrics, Proc. R. Soc. Lond. A 145(855), 523 (1934)
3 Ben Dahan M. , Peik E. , Reichel J. , Castin Y. , Salomon C. . Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett., 1996, 76(24): 4508
https://doi.org/10.1103/PhysRevLett.76.4508
4 Peik E. , Ben Dahan M. , Bouchoule I. , Castin Y. , Salomon C. . Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams. Phys. Rev. A, 1997, 55(4): 2989
https://doi.org/10.1103/PhysRevA.55.2989
5 Morsch O. , H. Müller J. , Cristiani M. , Ciampini D. , Arimondo E. . Bloch oscillations and mean-field effects of Bose‒Einstein condensates in 1D optical lattices. Phys. Rev. Lett., 2001, 87(14): 140402
https://doi.org/10.1103/PhysRevLett.87.140402
6 Hartmann T. , Keck F. , J. Korsch H. , Mossmann S. . Dynamics of Bloch oscillations. New J. Phys., 2004, 6: 2
https://doi.org/10.1088/1367-2630/6/1/002
7 Gustavsson M. , Haller E. , J. Mark M. , G. Danzl J. , Rojas-Kopeinig G. , C. Nägerl H. . Control of interaction-induced dephasing of Bloch oscillations. Phys. Rev. Lett., 2008, 100(8): 080404
https://doi.org/10.1103/PhysRevLett.100.080404
8 I. Choi D. , Niu Q. . Bose‒Einstein condensates in an optical lattice. Phys. Rev. Lett., 1999, 82(10): 2022
https://doi.org/10.1103/PhysRevLett.82.2022
9 Raizen M. , Salomon C. , Niu Q. . New light on quantum transport. Phys. Today, 1997, 50(7): 30
https://doi.org/10.1063/1.881845
10 Pertsch T. , Dannberg P. , Elflein W. , Braüer A. , Lederer F. . Optical Bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett., 1999, 83: 4752
https://doi.org/10.1103/PhysRevLett.83.4752
11 Morandotti R. , Peschel U. , S. Aitchison J. , S. Eisenberg H. , Silberberg Y. . Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett., 1999, 83(23): 4756
https://doi.org/10.1103/PhysRevLett.83.4756
12 Zhang Z. , Ning S. , Zhong H. , R. Belić M. , Zhang Y. , Feng Y. , Liang S. , Zhang Y. , Xiao M. . Experimental demonstration of optical Bloch oscillation in electromagnetically induced photonic lattices. Fundamental Research, 2022, 2(3): 401
https://doi.org/10.1016/j.fmre.2021.08.019
13 Agarwal V. , A. del Río J. , Malpuech G. , Zamfirescu M. , Kavokin A. , Coquillat D. , Scalbert D. , Vladimirova M. , Gil B. . Photon Bloch oscillations in porous silicon optical superlattices. Phys. Rev. Lett., 2004, 92(9): 097401
https://doi.org/10.1103/PhysRevLett.92.097401
14 H. Anderson M. , R. Ensher J. , R. Matthews M. , E. Wieman C. , A. Cornell E. . Observation of Bose‒Einstein condensation in a dilute atomic vapor. Science, 1995, 269(5221): 198
https://doi.org/10.1126/science.269.5221.198
15 B. Davis K. , O. Mewes M. , R. Andrews M. , J. van Druten N. , S. Durfee D. , M. Kurn D. , Ketterle W. . Bose‒Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 1995, 75(22): 3969
https://doi.org/10.1103/PhysRevLett.75.3969
16 Kasevich M. , Chu S. . Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett., 1992, 69(12): 1741
https://doi.org/10.1103/PhysRevLett.69.1741
17 Reichel J. , Bardou F. , B. Dahan M. , Peik E. , Rand S. , Salomon C. , Cohen-Tannoudji C. . Raman cooling of cesium below 3 nK: New approach inspired by Lévy flight statistics. Phys. Rev. Lett., 1995, 75(25): 4575
https://doi.org/10.1103/PhysRevLett.75.4575
18 Boyer V. , J. Lising L. , L. Rolston S. , D. Phillips W. . Deeply subrecoil two-dimensional Raman cooling. Phys. Rev. A, 2004, 70(4): 043405
https://doi.org/10.1103/PhysRevA.70.043405
19 Modugno G. , de Mirandés E. , Ferlaino F. , Ott H. , Roati G. , Inguscio M. . Atom interferometry in a vertical optical lattice. Fortschr. Phys., 2004, 52(11−12): 1173
https://doi.org/10.1002/prop.200410187
20 Roati G. , de Mirandes E. , Ferlaino F. , Ott H. , Modugno G. , Inguscio M. . Atom interferometry with trapped Fermi gases. Phys. Rev. Lett., 2004, 92(23): 230402
https://doi.org/10.1103/PhysRevLett.92.230402
21 Ferrari G. , Poli N. , Sorrentino F. , M. Tino G. . Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale. Phys. Rev. Lett., 2006, 97(6): 060402
https://doi.org/10.1103/PhysRevLett.97.060402
22 Xu V. , Jaffe M. , D. Panda C. , L. Kristensen S. , W. Clark L. , Müller H. . Probing gravity by holding atoms for 20 seconds. Science, 2019, 366(6466): 745
https://doi.org/10.1126/science.aay6428
23 Cladé P.Guellati-Khélifa S.Schwob C.Nez F.Julien L.Biraben F., A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave, Europhys. Lett. 71(5), 730 (2005)
24 Poli N. , Y. Wang F. , G. Tarallo M. , Alberti A. , Prevedelli M. , M. Tino G. . Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett., 2011, 106(3): 038501
https://doi.org/10.1103/PhysRevLett.106.038501
25 Rosi G. , Sorrentino F. , Cacciapuoti L. , Prevedelli M. , Tino G. . Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 2014, 510(7506): 518
https://doi.org/10.1038/nature13433
26 M. Tino G. . Testing gravity with cold atom interferometry: Results and prospects. Quantum Sci. Technol., 2021, 6(2): 024014
https://doi.org/10.1088/2058-9565/abd83e
27 B. Fixler J. , T. Foster G. , M. McGuirk J. , A. Kasevich M. . Atom interferometer measurement of the Newtonian constant of gravity. Science, 2007, 315(5808): 74
https://doi.org/10.1126/science.1135459
28 Rosi G. , Cacciapuoti L. , Sorrentino F. , Menchetti M. , Prevedelli M. , M. Tino G. . Measurement of the gravity-field curvature by atom interferometry. Phys. Rev. Lett., 2015, 114(1): 013001
https://doi.org/10.1103/PhysRevLett.114.013001
29 Cladé P. , de Mirandes E. , Cadoret M. , Guellati-Khélifa S. , Schwob C. , Nez F. , Julien L. , Biraben F. . Precise measurement of h/mRb using Bloch oscillations in a vertical optical lattice: Determination of the fine-structure constant. Phys. Rev. A, 2006, 74: 052109
https://doi.org/10.1103/PhysRevA.74.052109
30 H. Parker R. , Yu C. , Zhong W. , Estey B. , Müller H. . Measurement of the fine-structure constant as a test of the Standard Model. Science, 2018, 360(6385): 191
https://doi.org/10.1126/science.aap7706
31 G. Tarallo M. , Mazzoni T. , Poli N. , V. Sutyrin D. , Zhang X. , M. Tino G. . Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin−gravity coupling effects. Phys. Rev. Lett., 2014, 113(2): 023005
https://doi.org/10.1103/PhysRevLett.113.023005
32 Guo X. , Yu Z. , Wei F. , Jin S. , Chen X. , Li X. , Zhang X. , Zhou X. . Quantum precision measurement of two-dimensional forces with 10‒28-Newton stability. Sci. Bull. (Beijing), 2022, 67(22): 2291
https://doi.org/10.1016/j.scib.2022.10.027
33 Berg-Sørensen K. , Mølmer K. . Bose‒Einstein condensates in spatially periodic potentials. Phys. Rev. A, 1998, 58(2): 1480
https://doi.org/10.1103/PhysRevA.58.1480
34 J. E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys, D. Cho, K. Helmerson, S. L. Rolston , W. D. Phillips. J. H. Denschlag, A Bose‒Einstein condensate in an optical lattice, J. Phys. At. Mol. Opt. Phys. 35(14), 3095 (2002)
35 Yu Z. , Tian J. , Peng P. , Mao D. , Chen X. , Zhou X. . Transport of ultracold atoms in superpositions of S- and D-band states in a moving optical lattice. Phys. Rev. A, 2023, 107(2): 023303
https://doi.org/10.1103/PhysRevA.107.023303
36 Yin G. , Kong L. , Yu Z. , Tian J. , Chen X. , Zhou X. . Time bound of atomic adiabatic evolution in an accelerated optical lattice. Phys. Rev. A, 2023, 108(3): 033310
https://doi.org/10.1103/PhysRevA.108.033310
37 Andia M. , Jannin R. , c. Nez F. , c. Biraben F. , Guellati-Khélifa S. , Cladé P. . Compact atomic gravimeter based on a pulsed and accelerated optical lattice. Phys. Rev. A, 2013, 88: 031605
https://doi.org/10.1103/PhysRevA.88.031605
38 Cladé P. . Bloch oscillations in atom interferometry. Riv. Nuovo Cim., 2015, 38: 173
https://doi.org/10.1393/ncr/i2015-10111-3
39 Charrière R. , Cadoret M. , Zahzam N. , Bidel Y. , Bresson A. . Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Phys. Rev. A, 2012, 85(1): 013639
https://doi.org/10.1103/PhysRevA.85.013639
40 Bouchendira R., Thèse de doctorat, Université Pierre et Marie Curie, Paris (2012), soutenue publiquement le 17 Juillet 2012
41 Andia M., Thèse de doctorat, Université Pierre et Marie Curie, Paris (2015), soutenue le 25 Septembre 2015
42 Choudhury S. , J. Mueller E. . Transverse collisional instabilities of a Bose‒Einstein condensate in a driven one-dimensional lattice. Phys. Rev. A, 2015, 91(2): 023624
https://doi.org/10.1103/PhysRevA.91.023624
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed