1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China 2. State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China 3. Institute of Carbon-based Thin Film Electronics, Peking University, Taiyuan 030012, China
Advancements in the experimental toolbox of cold atoms have enabled the meticulous control of atomic Bloch oscillation (BO) within optical lattices, thereby enhancing the capabilities of gravity interferometers. This work delves into the impact of thermal effects on Bloch oscillation in 1D accelerated optical lattices aligned with gravity by varying the system’s initial temperature. Through the application of Raman cooling, we effectively reduce the longitudinal thermal effect, stabilizing the longitudinal coherence length over the timescale of its lifetime. The atomic losses over multiple Bloch periods are measured, which are primarily attributed to transverse excitation. Furthermore, we identify two distinct inverse scaling behaviors in the oscillation lifetime scaled by the corresponding density with respect to temperatures, implying diverse equilibrium processes within or outside the Bose−Einstein condensate (BEC) regime. The competition between the system’s coherence and atomic density leads to a relatively smooth variation in the actual lifetime versus temperature. Our findings provide valuable insights into the interaction between thermal effects and BO, offering avenues for the refinement of quantum measurement technologies.
Bloch F., Über die quantenmechanik der elektronen in kristallgittern, Eur. Phys. J. A 52(7–8), 555 (1929)
2
Zener C., A theory of the electrical breakdown of solid dielectrics, Proc. R. Soc. Lond. A 145(855), 523 (1934)
3
Ben Dahan M. , Peik E. , Reichel J. , Castin Y. , Salomon C. . Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett., 1996, 76(24): 4508 https://doi.org/10.1103/PhysRevLett.76.4508
4
Peik E. , Ben Dahan M. , Bouchoule I. , Castin Y. , Salomon C. . Bloch oscillations of atoms, adiabatic rapid passage, and monokinetic atomic beams. Phys. Rev. A, 1997, 55(4): 2989 https://doi.org/10.1103/PhysRevA.55.2989
5
Morsch O. , H. Müller J. , Cristiani M. , Ciampini D. , Arimondo E. . Bloch oscillations and mean-field effects of Bose‒Einstein condensates in 1D optical lattices. Phys. Rev. Lett., 2001, 87(14): 140402 https://doi.org/10.1103/PhysRevLett.87.140402
Gustavsson M. , Haller E. , J. Mark M. , G. Danzl J. , Rojas-Kopeinig G. , C. Nägerl H. . Control of interaction-induced dephasing of Bloch oscillations. Phys. Rev. Lett., 2008, 100(8): 080404 https://doi.org/10.1103/PhysRevLett.100.080404
Pertsch T. , Dannberg P. , Elflein W. , Braüer A. , Lederer F. . Optical Bloch oscillations in temperature tuned waveguide arrays. Phys. Rev. Lett., 1999, 83: 4752 https://doi.org/10.1103/PhysRevLett.83.4752
11
Morandotti R. , Peschel U. , S. Aitchison J. , S. Eisenberg H. , Silberberg Y. . Experimental observation of linear and nonlinear optical Bloch oscillations. Phys. Rev. Lett., 1999, 83(23): 4756 https://doi.org/10.1103/PhysRevLett.83.4756
12
Zhang Z. , Ning S. , Zhong H. , R. Belić M. , Zhang Y. , Feng Y. , Liang S. , Zhang Y. , Xiao M. . Experimental demonstration of optical Bloch oscillation in electromagnetically induced photonic lattices. Fundamental Research, 2022, 2(3): 401 https://doi.org/10.1016/j.fmre.2021.08.019
13
Agarwal V. , A. del Río J. , Malpuech G. , Zamfirescu M. , Kavokin A. , Coquillat D. , Scalbert D. , Vladimirova M. , Gil B. . Photon Bloch oscillations in porous silicon optical superlattices. Phys. Rev. Lett., 2004, 92(9): 097401 https://doi.org/10.1103/PhysRevLett.92.097401
14
H. Anderson M. , R. Ensher J. , R. Matthews M. , E. Wieman C. , A. Cornell E. . Observation of Bose‒Einstein condensation in a dilute atomic vapor. Science, 1995, 269(5221): 198 https://doi.org/10.1126/science.269.5221.198
15
B. Davis K. , O. Mewes M. , R. Andrews M. , J. van Druten N. , S. Durfee D. , M. Kurn D. , Ketterle W. . Bose‒Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 1995, 75(22): 3969 https://doi.org/10.1103/PhysRevLett.75.3969
Reichel J. , Bardou F. , B. Dahan M. , Peik E. , Rand S. , Salomon C. , Cohen-Tannoudji C. . Raman cooling of cesium below 3 nK: New approach inspired by Lévy flight statistics. Phys. Rev. Lett., 1995, 75(25): 4575 https://doi.org/10.1103/PhysRevLett.75.4575
18
Boyer V. , J. Lising L. , L. Rolston S. , D. Phillips W. . Deeply subrecoil two-dimensional Raman cooling. Phys. Rev. A, 2004, 70(4): 043405 https://doi.org/10.1103/PhysRevA.70.043405
19
Modugno G. , de Mirandés E. , Ferlaino F. , Ott H. , Roati G. , Inguscio M. . Atom interferometry in a vertical optical lattice. Fortschr. Phys., 2004, 52(11−12): 1173 https://doi.org/10.1002/prop.200410187
20
Roati G. , de Mirandes E. , Ferlaino F. , Ott H. , Modugno G. , Inguscio M. . Atom interferometry with trapped Fermi gases. Phys. Rev. Lett., 2004, 92(23): 230402 https://doi.org/10.1103/PhysRevLett.92.230402
21
Ferrari G. , Poli N. , Sorrentino F. , M. Tino G. . Long-lived Bloch oscillations with bosonic Sr atoms and application to gravity measurement at the micrometer scale. Phys. Rev. Lett., 2006, 97(6): 060402 https://doi.org/10.1103/PhysRevLett.97.060402
22
Xu V. , Jaffe M. , D. Panda C. , L. Kristensen S. , W. Clark L. , Müller H. . Probing gravity by holding atoms for 20 seconds. Science, 2019, 366(6466): 745 https://doi.org/10.1126/science.aay6428
23
Cladé P.Guellati-Khélifa S.Schwob C.Nez F.Julien L.Biraben F., A promising method for the measurement of the local acceleration of gravity using Bloch oscillations of ultracold atoms in a vertical standing wave, Europhys. Lett. 71(5), 730 (2005)
24
Poli N. , Y. Wang F. , G. Tarallo M. , Alberti A. , Prevedelli M. , M. Tino G. . Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter. Phys. Rev. Lett., 2011, 106(3): 038501 https://doi.org/10.1103/PhysRevLett.106.038501
25
Rosi G. , Sorrentino F. , Cacciapuoti L. , Prevedelli M. , Tino G. . Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 2014, 510(7506): 518 https://doi.org/10.1038/nature13433
26
M. Tino G. . Testing gravity with cold atom interferometry: Results and prospects. Quantum Sci. Technol., 2021, 6(2): 024014 https://doi.org/10.1088/2058-9565/abd83e
27
B. Fixler J. , T. Foster G. , M. McGuirk J. , A. Kasevich M. . Atom interferometer measurement of the Newtonian constant of gravity. Science, 2007, 315(5808): 74 https://doi.org/10.1126/science.1135459
28
Rosi G. , Cacciapuoti L. , Sorrentino F. , Menchetti M. , Prevedelli M. , M. Tino G. . Measurement of the gravity-field curvature by atom interferometry. Phys. Rev. Lett., 2015, 114(1): 013001 https://doi.org/10.1103/PhysRevLett.114.013001
29
Cladé P. , de Mirandes E. , Cadoret M. , Guellati-Khélifa S. , Schwob C. , Nez F. , Julien L. , Biraben F. . Precise measurement of h/mRb using Bloch oscillations in a vertical optical lattice: Determination of the fine-structure constant. Phys. Rev. A, 2006, 74: 052109 https://doi.org/10.1103/PhysRevA.74.052109
30
H. Parker R. , Yu C. , Zhong W. , Estey B. , Müller H. . Measurement of the fine-structure constant as a test of the Standard Model. Science, 2018, 360(6385): 191 https://doi.org/10.1126/science.aap7706
31
G. Tarallo M. , Mazzoni T. , Poli N. , V. Sutyrin D. , Zhang X. , M. Tino G. . Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin−gravity coupling effects. Phys. Rev. Lett., 2014, 113(2): 023005 https://doi.org/10.1103/PhysRevLett.113.023005
32
Guo X. , Yu Z. , Wei F. , Jin S. , Chen X. , Li X. , Zhang X. , Zhou X. . Quantum precision measurement of two-dimensional forces with 10‒28-Newton stability. Sci. Bull. (Beijing), 2022, 67(22): 2291 https://doi.org/10.1016/j.scib.2022.10.027
33
Berg-Sørensen K. , Mølmer K. . Bose‒Einstein condensates in spatially periodic potentials. Phys. Rev. A, 1998, 58(2): 1480 https://doi.org/10.1103/PhysRevA.58.1480
34
J. E. Simsarian, H. Häffner, C. McKenzie, A. Browaeys, D. Cho, K. Helmerson, S. L. Rolston , W. D. Phillips. J. H. Denschlag, A Bose‒Einstein condensate in an optical lattice, J. Phys. At. Mol. Opt. Phys. 35(14), 3095 (2002)
35
Yu Z. , Tian J. , Peng P. , Mao D. , Chen X. , Zhou X. . Transport of ultracold atoms in superpositions of S- and D-band states in a moving optical lattice. Phys. Rev. A, 2023, 107(2): 023303 https://doi.org/10.1103/PhysRevA.107.023303
36
Yin G. , Kong L. , Yu Z. , Tian J. , Chen X. , Zhou X. . Time bound of atomic adiabatic evolution in an accelerated optical lattice. Phys. Rev. A, 2023, 108(3): 033310 https://doi.org/10.1103/PhysRevA.108.033310
37
Andia M. , Jannin R. , c. Nez F. , c. Biraben F. , Guellati-Khélifa S. , Cladé P. . Compact atomic gravimeter based on a pulsed and accelerated optical lattice. Phys. Rev. A, 2013, 88: 031605 https://doi.org/10.1103/PhysRevA.88.031605
Charrière R. , Cadoret M. , Zahzam N. , Bidel Y. , Bresson A. . Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Phys. Rev. A, 2012, 85(1): 013639 https://doi.org/10.1103/PhysRevA.85.013639
40
Bouchendira R., Thèse de doctorat, Université Pierre et Marie Curie, Paris (2012), soutenue publiquement le 17 Juillet 2012
41
Andia M., Thèse de doctorat, Université Pierre et Marie Curie, Paris (2015), soutenue le 25 Septembre 2015
42
Choudhury S. , J. Mueller E. . Transverse collisional instabilities of a Bose‒Einstein condensate in a driven one-dimensional lattice. Phys. Rev. A, 2015, 91(2): 023624 https://doi.org/10.1103/PhysRevA.91.023624