1. Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China 2. University of Science and Technology of China, Hefei 230026, China 3. School of Physics and Astronomy and Yunnan Key Laboratory of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China 4. Micro Optical Instruments Inc., Shenzhen 518118, China 5. Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
Bilayer (BL) transition metal dichalcogenides (TMDs) are important materials in valleytronics and twistronics. Here we study terahertz (THz) magneto-optical (MO) properties of n-type 2H-stacking BL molybdenum sulfide (MoS2) on sapphire substrate grown by chemical vapor deposition. The AFM, Raman spectroscopy and photoluminescence are used for characterization of the samples. Applying THz time-domain spectroscopy (TDS), in combination with polarization test and the presence of magnetic field in Faraday geometry, THz MO transmissions through the sample are measured from 0 to 8 T at 80 K. The complex right- and left-handed circular MO conductivities for 2H-stacking BL MoS2 are obtained. Through fitting the experimental results with theoretical formula of MO conductivities for an electron gas, generalized by us previously through the inclusion of photon-induced electronic backscattering effect, we are able to determine magneto-optically the key electronic parameters of BL MoS2, such as the electron density , the electronic relaxation time , the electronic localization factor and, particularly, the effective electron mass around -point in between the - and -point in the electronic band structure. The dependence of these parameters upon magnetic field is examined and analyzed. This is a pioneering experimental work to measure around the -point in 2H-stacking BL MoS2 and the experimental value is very close to that obtained theoretically. We find that in 2H-stacking BL MoS2 decreases/increases/decreases/increases with increasing magnetic field. The results obtained from this study can be benefit to us in gaining an in-depth understanding of the electronic and optoelectronic properties of BL TMD systems.
Akinwande D., Huyghebaert C., H. Wang C., I. Serna M., Goossens S., J. Li L., S. Wong H., and H. L. Koppens F., Graphene and two-dimensional materials for silicon technology, Nature 573(7775), 507 (2019) https://doi.org/10.1038/s41586-019-1573-9
2
Xiao D., B. Liu G., Feng W., Xu X., and Yao W., Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012) https://doi.org/10.1103/PhysRevLett.108.196802
3
Cao Y., Fatemi V., Fang S., Watanabe K., Taniguchi T., Kaxiras E., and Jarillo-Herrero P., Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018) https://doi.org/10.1038/nature26160
4
L. Lin M., H. Tan Q., B. Wu J., S. Chen X., H. Wang J., H. Pan Y., Zhang X., Cong X., Zhang J., Ji W., A. Hu P., H. Liu K., and H. Tan P., Moiré phonons in twisted bilayer MoS2, ACS Nano 12(8), 8770 (2018) https://doi.org/10.1021/acsnano.8b05006
Liao M., Wei Z., Du L., Wang Q., Tang J., Yu H., Wu F., Zhao J., Xu X., Han B., Liu K., Gao P., Polcar T., Sun Z., Shi D., Yang R., and Zhang G., Precise control of the interlayer twist angle in large scale MoS2 homostructures, Nat. Commun. 11(1), 2153 (2020) https://doi.org/10.1038/s41467-020-16056-4
7
Y. Zhang T., T. Wang J., Wu P., Y. Lu A., and Kong J., Vapour-phase deposition of two-dimensional layered chalcogenides, Nat. Rev. Mater. 8(12), 799 (2023) https://doi.org/10.1038/s41578-023-00609-2
8
Fox C., L. Mao Y., Zhang X., Wang Y., and Xiao J., Stacking order engineering of two-dimensional materials and device applications, Chem. Rev. 124(4), 1862 (2024) https://doi.org/10.1021/acs.chemrev.3c00618
Tong Q., Yu H., Zhu Q., Wang Y., Xu X., and Yao W., Topological mosaics in moiré superlattices of van der Waals heterobilayers, Nat. Phys. 13(4), 356 (2017) https://doi.org/10.1038/nphys3968
11
Seyler K., Rivera P., Yu H., Wilson N., Ray E., Mandrus D., Yan J., Yao W., and Xu X., Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers, Nature 567(7746), 66 (2019) https://doi.org/10.1038/s41586-019-0957-1
12
Sharma G., Tunable topological Nernst effect in two-dimensional transition-metal dichalcogenides, Phys. Rev. B 98(7), 075416 (2018) https://doi.org/10.1103/PhysRevB.98.075416
13
Brotons-Gisbert M., Baek H., Molina-Sa’nchez A., Campbell A., Scerri E., White D., Watanabe K., Taniguchi K., Bonato C., and D. Gerardot B., Spin-layer locking of interlayer excitons trapped in moiré potentials, Nat. Mater. 19(6), 630 (2020) https://doi.org/10.1038/s41563-020-0687-7
14
Tong Q., Yu H., Zhu Q., Wang Y., Xu X., and Yao W., Topological mosaics in moiré superlattices of van der Waals heterobilayers, Nat. Phys. 13(4), 356 (2017) https://doi.org/10.1038/nphys3968
15
F. Mak K., Lee C., Hone J., Shan J., and F. Heinz T., Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010) https://doi.org/10.1103/PhysRevLett.105.136805
16
M. van der Zande A., Kunstmann J., Chernikov A., A. Chenet D., M. You Y., X. Zhang X., Y. Huang P., C. Berkelbach T., Wang L., Zhang F., S. Hybertsen M., A. Muller D., R. Reichman D., F. Heinz T., and C. Hone J., Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist, Nano Lett. 14(7), 3869 (2014) https://doi.org/10.1021/nl501077m
17
Kormányos A., Z’olyomi V., I. Fal’ko V., and Burkard G., Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2, Phys. Rev. B 98(3), 035408 (2018) https://doi.org/10.1103/PhysRevB.98.035408
18
Cheng X., Xu W., Wen H., Zhang J., Zhang H., Li H., M. Peeters F., and Chen Q., Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy, Front. Phys. 18(5), 53303 (2023) https://doi.org/10.1007/s11467-023-1295-1
19
Xia M., Li B., Yin K., Capellini G., Niu G., Gong Y., Zhou W., M. Ajayan P., and H. Xie Y., Spectroscopic signatures of AA′ and AB stacking of chemical vapor deposited bilayer MoS2, ACS Nano 9(12), 12246 (2015) https://doi.org/10.1021/acsnano.5b05474
20
Ulbricht R., Hendry E., Shan J., F. Heinz T., and Bonn M., Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy, Rev. Mod. Phys. 83(2), 543 (2011) https://doi.org/10.1103/RevModPhys.83.543
21
Lloyd-Hughes J.I. Jeon T., A review of the terahertz conductivity of bulk and nano-materials, Int. J. Infrared Millim. Terahertz Waves 33(9), 871 (2012)
22
Schubert M., Kühne P., Darakchieva V., and Hofmann T., Optical Hall effect model description: Tutorial, J. Opt. Soc. Am. A 33(8), 1553 (2016) https://doi.org/10.1364/JOSAA.33.001553
23
J. Campbell A., Brotons-Gisbert M., Baek H., Vitale V., Taniguchi T., Watanabe K., Lischner J., and D. Gerardot B., Exciton−polarons in the presence of strongly correlated electronic states in a MoSe2/WSe2 moiré superlattice, npj 2D Mater. Appl. 6, 79 (2022) https://doi.org/10.1038/s41699-022-00358-w
24
Mei H., Xu W., Wang C., Yuan H., Zhang C., Ding L., Zhang J., Deng C., Wang Y., and M. Peeters F., Terahertz magneto-optical properties of bi- and tri-layer graphene, J. Phys.: Condens. Matter 30(17), 175701 (2018) https://doi.org/10.1088/1361-648X/aab81d
25
Schöche S., S. Shi J., Boosalis A., Kühne P., M. Herzinger C., A. Woollam J., J. Schaff W., F. Eastman L., Schubert M., and Hofmann T., Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures, Appl. Phys. Lett. 98(9), 092103 (2011) https://doi.org/10.1063/1.3556617
26
Yu Y., Li C., Liu Y., Su L., Zhang Y., and Cao L., Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films, Sci. Rep. 3(1), 1866 (2013) https://doi.org/10.1038/srep01866
27
Wang X., Feng H., Wu Y., and Jiao L., Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition, J. Am. Chem. Soc. 135(14), 5304 (2013) https://doi.org/10.1021/ja4013485
28
Hussain S., A. Shehzad M., Vikraman D., Z. Iqbal M., Singh J., F. Khan M., Eom J., Seo Y., and Jung J., Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition, J. Alloys Compd. 653, 369 (2015) https://doi.org/10.1016/j.jallcom.2015.09.004
29
M. van der Zande A., Kunstmann J., Chernikov A., A. Chenet D., M. You Y., X. Zhang X., Y. Huang P., C. Berkelbach T., Wang L., Zhang F., S. Hybertsen M., A. Muller D., R. Reichman D., F. Heinz T., and C. Hone J., Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist, Nano Lett. 14(7), 3869 (2014) https://doi.org/10.1021/nl501077m
30
Ullah F., Lee J.-H., Tahir Z., Samad A., T. Le C., Kim J., Kim D., U. Rashid M., Lee S., Kim K., Cheong H., I. Jang J., Seong M.-J., and S. Kim Y., Selective growth and robust valley polarization of bilayer 3R-MoS2, Appl. Mater. & Inter. 13(48), 57588 (2021) https://doi.org/10.1021/acsami.1c16889
F. Man L., Xu W., M. Xiao Y., Wen H., Ding L., Van Duppen B., and M. Peeters F., Terahertz magneto-optical properties of graphene hydrodynamic electron liquid, Phys. Rev. B 104(12), 125420 (2021) https://doi.org/10.1103/PhysRevB.104.125420
33
Morikawa O., Quema A., Nashima S., Sumikura H., Nagashima T., and Hangyo M., Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy, J. Appl. Phys. 100(3), 033105 (2006) https://doi.org/10.1063/1.2219981
34
Tinkham M., Energy gap interpretation of experiments on infrared transmission through superconducting films, Phys. Rev. 104(3), 845 (1956) https://doi.org/10.1103/PhysRev.104.845
35
W. Han F.Xu W.L. Li L.Zhang C., A generalization of the Drude−Smith formula for magneto-optical conductivities in Faraday geometry, J. Appl. Phys. 119(24), 245706 (2016)
36
V. Smith N., Classical generalization of the Drude formula for the optical conductivity, Phys. Rev. B 13, 4212 (2013)
37
Wen H., Xu W., Wang C., Song D., Y. Mei H., Zhang J., and Ding L., Magneto-optical properties of monolayer MoS2−SiO2/Si structure measured via terahertz time-domain spectroscopy, Nano Select 1, 90 (2020)
38
G. Spitzer W. and Y. Fan H., Determination of optical constants and carrier effective mass of semiconductors, Phys. Rev. 106(5), 882 (1957) https://doi.org/10.1103/PhysRev.106.882
39
M. Peeters F., G. Wu X., and T. Devreese J., Cyclotron mass of a polaron in two dimensions, Phys. Rev. B 34(2), 1160 (1986) https://doi.org/10.1103/PhysRevB.34.1160
40
Liu L., Li T., Ma L., Li W., Gao S., Sun W., Dong R., Zou X., Fan D., Shao L., Gu C., Dai N., Yu Z., Chen X., Tu X., Nie Y., Wang P., Wang J., Shi Y., and Wang X., Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire, Nature 605(7908), 69 (2022) https://doi.org/10.1038/s41586-022-04523-5
41
W. Hodby J., P. Russell G., M. Peeters F., T. Devreese J., and M. Larsen D., Cyclotron resonance of polarons in the silver halides: AgBr and AgCl, Phys. Rev. Lett. 58(14), 1471 (1987) https://doi.org/10.1103/PhysRevLett.58.1471
42
Mukhopadhyay A., Kanungo S., and Rahaman H., The effect of the stacking arrangement on the device behavior of bilayer MoS2 FETs, J. Comput. Electron. 20(1), 161 (2021) https://doi.org/10.1007/s10825-020-01636-w