Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (4): 42205   https://doi.org/10.1007/s11467-024-1426-3
  本期目录
Generation and characterization of customized Laguerre−Gaussian beams with arbitrary profiles
Chengyuan Wang1(), Yun Chen1,2, Jinwen Wang1, Xin Yang1, Hong Gao1(), Fuli Li1
1. Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
2. Department of Physics, Huzhou University, Huzhou 313000, China
 全文: PDF(2718 KB)   HTML
Abstract

We experimentally demonstrate the generation of customized Laguerre−Gaussian (LG) beams whose intensity maxima are localized around any desired curves. The principle is to act with appropriate algebraic functions on the angular spectra of LG beams. We characterize the propagation properties of these beams and compare them with non-diffraction caustic beams possessing the same intensity profiles. The results manifest that the customized-LG beams can maintain their profiles during propagation and suffer less energy loss than the non-diffraction caustic beams, and hence are able to propagate a longer distance. Moreover, the customized-LG beam exhibits self-healing ability when parts of their bodies are blocked. This new structure beam has potential applications in areas such as optical communication, soliton routing and steering, and optical tweezing.

Key wordslight manipulation    wave propagation    invariant optical fields
收稿日期: 2023-10-10      出版日期: 2024-06-28
Corresponding Author(s): Chengyuan Wang,Hong Gao   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(4): 42205.
Chengyuan Wang, Yun Chen, Jinwen Wang, Xin Yang, Hong Gao, Fuli Li. Generation and characterization of customized Laguerre−Gaussian beams with arbitrary profiles. Front. Phys. , 2024, 19(4): 42205.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-024-1426-3
https://academic.hep.com.cn/fop/CN/Y2024/V19/I4/42205
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 Rubinsztein-Dunlop H., Forbes A., V. Berry M., R. Dennis M., L. Andrews D., Mansuripur M., Denz C., Alpmann C., Banzer P., Bauer T., Karimi E., Marrucci L., Padgett M., Ritsch-Marte M., M. Litchinitser N., P. Bigelow N., Rosales-Guzmán C., Belmonte A., P. Torres J., W. Neely T., Baker M., Gordon R., B. Stilgoe A., Romero J., G. White A., Fickler R., E. Willner A., Xie G., McMorran B., M. Weiner A.. Roadmap on structured light. J. Opt., 2016, 19(1): 013001
https://doi.org/10.1088/2040-8978/19/1/013001
2 Forbes A., de Oliveira M., R. Dennis M.. Structured light. Nat. Photonics, 2021, 15(4): 253
https://doi.org/10.1038/s41566-021-00780-4
3 Hansen A., Justin T., P Bigelow Schultz. Singular atom optics with spinor Bose–Einstein condensates. Optica, 2016, 3(4): 355
https://doi.org/10.1364/OPTICA.3.000355
4 Yang Y., Ren Y., Chen M., Arita Y., Rosales-Guzmán C.. Optical trapping with structured light: A review. Adv. Photonics, 2021, 3(3): 034001
https://doi.org/10.1117/1.AP.3.3.034001
5 Otte E., Denz C.. Optical trapping gets structure: Structured light for advanced optical manipulation. Appl. Phys. Rev., 2020, 7(4): 041308
https://doi.org/10.1063/5.0013276
6 Baumgartl J., Mazilu M., Dholakia K.. Optically mediated particle clearing using airy wavepackets. Nat. Photonics, 2008, 2(11): 675
https://doi.org/10.1038/nphoton.2008.201
7 Forbes A., de Oliveira M., R. Dennis M.. Light-sheet microscopy using an airy beam. Nat. Methods, 2014, 11(5): 541
https://doi.org/10.1038/nmeth.2922
8 P. Torres J.. Multiplexing twisted light. Nat. Photonics, 2012, 6(7): 420
https://doi.org/10.1038/nphoton.2012.154
9 E. Willner A., Pang K., Song H., Zou K., Zhou H.. Orbital angular momentum of light for communications. Appl. Phys. Rev., 2021, 8(4): 041312
https://doi.org/10.1063/5.0054885
10 Wang J., Castellucci F., Franke-Arnold S.. Vectorial light–matter interaction: Exploring spatially structured complex light fields. AVS Quantum Sci., 2020, 2(3): 031702
https://doi.org/10.1116/5.0016007
11 K. Wu Z., Guo H., Wang W., Z. Gu Y.. Evolution of finite energy airy beams in cubic–quintic atomic vapor system. Front. Phys., 2018, 13(1): 134201
https://doi.org/10.1007/s11467-017-0707-5
12 Niu F., Zhang H., Yuan J., Xiao L., Jia S., Wang L.. Photonic graphene with reconfigurable geometric structures in coherent atomic ensembles. Front. Phys., 2023, 18(5): 52304
https://doi.org/10.1007/s11467-023-1294-2
13 Wang C., Yu Y., Chen Y., Cao M., Wang J., Yang X., Qiu S., Wei D., Gao H., Li F.. Efficient quantum memory of orbital angular momentum qubits in cold atoms. Quantum Sci. Technol., 2021, 6(4): 045008
https://doi.org/10.1088/2058-9565/ac120a
14 Chen Y., Wang J., Wang C., Zhang S., Cao M., Franke-Arnold S., Gao H., Li F.. Phase gradient protection of stored spatially multimode perfect optical vortex beams in a diffused rubidium vapor. Opt. Express, 2021, 29(20): 31582
https://doi.org/10.1364/OE.439716
15 Wang C., Chen Y., Jiang Z., Yu Y., Cao M., Wei D., Gao H., Li F.. Experimental investigation of light storage of diffraction-free and quasi-diffraction-free beams in hot atomic gas cell. Front. Phys., 2022, 17(2): 22503
https://doi.org/10.1007/s11467-021-1113-6
16 Wang Y., Chen Y., Zhang Y., Chen H., Yu S.. Generalised Hermite–Gaussian beams and mode transformations. J. Opt., 2016, 18(5): 055001
https://doi.org/10.1088/2040-8978/18/5/055001
17 Allen L., W. Beijersbergen M., J. C. Spreeuw R., P. Woerdman J.. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 1992, 45(11): 8185
https://doi.org/10.1103/PhysRevA.45.8185
18 A. Bandres M., C. Gutiérrez-Vega J.. Ince–Gaussian beams. Opt. Lett., 2004, 29(2): 144
https://doi.org/10.1364/OL.29.000144
19 Yu Y., Chen Y., Wang C., Wang J., Sun Z., Cao M., Gao H., Li F.. Optical storage of Ince–Gaussian modes in warm atomic vapor. Opt. Lett., 2021, 46(5): 1021
https://doi.org/10.1364/OL.414762
20 Durnin J., J. Miceli J., H. Eberly J.. Diffraction-free beams. Phys. Rev. Lett., 1987, 58(15): 1499
https://doi.org/10.1103/PhysRevLett.58.1499
21 McLaren M., Agnew M., Leach J., S. Roux F., J. Padgett M., W. Boyd R., Forbes A.. Entangled Bessel–Gaussian beams. Opt. Express, 2012, 20(21): 23589
https://doi.org/10.1364/OE.20.023589
22 Chu X., Sun Q., Wang J., Lü P., Xie W., Xu X.. Generating a Bessel–Gaussian beam for the application in optical engineering. Sci. Rep., 2015, 5(1): 18665
https://doi.org/10.1038/srep18665
23 Zhi Z., Na Q., Xie Q., Chen B., Li Y., Liu X., Li X., Wang L., Lo G., Song J.. On-chip generation of Bessel–Gaussian beam via concentrically distributed grating arrays for long-range sensing. Light Sci. Appl., 2023, 12(1): 92
https://doi.org/10.1038/s41377-023-01133-2
24 C. Gutiérrez-Vega J., D. Iturbe-Castillo M., Chávez-Cerda S.. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett., 2000, 25(20): 1493
https://doi.org/10.1364/OL.25.001493
25 A. Bandres M., C. Gutiérrez-Vega J., Chávez-Cerda S.. Parabolic nondiffracting optical wave fields. Opt. Lett., 2004, 29(1): 44
https://doi.org/10.1364/OL.29.000044
26 A. Sanchez-Serrano P., Wong-Campos D., Lopez-Aguayo S., C. Gutiérrez-Vega J.. Engineering of nondiffracting beams with genetic algorithms. Opt. Lett., 2012, 37(24): 5040
https://doi.org/10.1364/OL.37.005040
27 López-Aguayo S., V. Kartashov Y., A. Vysloukh V., Torner L.. Method to generate complex quasinondiffracting optical lattices. Phys. Rev. Lett., 2010, 105(1): 013902
https://doi.org/10.1103/PhysRevLett.105.013902
28 Yan W., Gao Y., Yuan Z., Wang Z., C. Ren Z., L. Wang X., Ding J., T. Wang H.. Non-diffracting and self-accelerating Bessel beams with on-demand tailored intensity profiles along arbitrary trajectories. Opt. Lett., 2021, 46(7): 1494
https://doi.org/10.1364/OL.418928
29 Abramochkin E., Volostnikov V.. Spiral-type beams. Opt. Commun., 1993, 102(3-4): 336
https://doi.org/10.1016/0030-4018(93)90406-U
30 Abramochkin E., Volostnikov V.. Spiral-type beams: Optical and quantum aspects. Opt. Commun., 1996, 125(4-6): 302
https://doi.org/10.1016/0030-4018(95)00640-0
31 Volyar A., Akimova Y.. Structural stability of spiral vortex beams to sector perturbations. Appl. Opt., 2021, 60(28): 8865
https://doi.org/10.1364/AO.435420
32 Zannotti A., Denz C., A. Alonso M., R. Dennis M.. Shaping caustics into propagation-invariant light. Nat. Commun., 2020, 11(1): 3597
https://doi.org/10.1038/s41467-020-17439-3
33 Mendoza-Hernández J.. Customizing structured light beams with a differential operator. Opt. Lett., 2021, 46(20): 5232
https://doi.org/10.1364/OL.438129
34 Martinez-Castellanos I., C. Gutiérrez-Vega J.. Shaping optical beams with non-integer orbital-angular momentum: A generalized differential operator approach. Opt. Lett., 2015, 40(8): 1764
https://doi.org/10.1364/OL.40.001764
35 Mendoza-Hernández J., Szatkowski M., F. Ferrer-Garcia M., C. Gutiérrez-Vega J., Lopez-Mago D.. Generation of light beams with custom orbital angular momentum and tunable transverse intensity symmetries. Opt. Express, 2019, 27(18): 26155
https://doi.org/10.1364/OE.27.026155
36 Čižmár T., Dholakia K.. Tunable Bessel light modes: Engineering the axial propagation. Opt. Express, 2009, 17(18): 15558
https://doi.org/10.1364/OE.17.015558
37 Mendoza-Hernández J., L. Arroyo-Carrasco M., D. Iturbe-Castillo M., Chávez-Cerda S.. Laguerre–Gauss beams versus Bessel beams showdown: Peer comparison. Opt. Lett., 2015, 40(16): 3739
https://doi.org/10.1364/OL.40.003739
38 Mendoza-Hernández J., Hidalgo-Aguirre M., Inclán Ladino A., Lopez-Mago D.. Perfect Laguerre–Gauss beams. Opt. Lett., 2020, 45(18): 5197
https://doi.org/10.1364/OL.402083
39 Liu X., E. Monfared Y., Pan R., Ma P., Cai Y., Liang C.. Experimental realization of scalar and vector perfect Laguerre–Gaussian beams. Appl. Phys. Lett., 2021, 119(2): 021105
https://doi.org/10.1063/5.0048741
[1] fop-24426-of-wangchengyuan_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed