Strong ferroelectricity in one-dimensional materials self-assembled by superatomic metal halide clusters
Yu Guo1, Yang Zhao1, Qiao Ling1, Si Zhou1,2,3(), Jijun Zhao1,2,3()
1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China 2. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China 3. Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
Cluster-assembled materials have long been pursued as they can create some unprecedented and desirable properties. Herein, we assemble a class of one-dimensional (1D) ReNX4 (X = F, Cl, Br and I) and MF5 (M = V, Nb and Ta) nanowires by covalently linking their superatomic clusters. These assembled 1D nanowires exhibit outstanding energetic and dynamic stabilities, and hold sizable spontaneous polarization, low ferroelectric switching barriers and high critical temperature. Their superior ferroelectricity is originated from d0-configuration transition metal ions generated by the hybridization of empty d orbitals of metal atoms and p orbitals of non-metal atoms. These critical insights pave a new avenue to fabricate 1D ferroelectrics toward the development of miniaturized and high-density electronic devices using building blocks as cluster with precise structures and functionalities.
Zhang K.Wang C.Zhang M.Bai Z.F. Xie F. Z. Tan Y.Guo Y.J. Hu K.Cao L.Zhang S. Tu X.Pan D. Kang L.Chen J.Wu P.Wang X.Wang J. Liu J.Song Y.Wang G.Song F.Ji W. Y. Xie S.F. Shi S.A. Reed M.Wang B., A Gd@C82 single-molecule electret, Nat. Nanotechnol. 15(12), 1019 (2020)
2
Müller J., Böscke T., Bräuhaus D., Schröder U., Böttger U., Sundqvist J., Kücher P., Mikolajick T., and Frey L., Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications, Appl. Phys. Lett. 99(11), 112901 (2011) https://doi.org/10.1063/1.3636417
3
Si M.K. Saha A. Gao S.Qiu G.Qin J.Duan Y.Jian J. Niu C.Wang H.Wu W.K. Gupta S.D. Ye P., A ferroelectric semiconductor field-effect transistor, Nat. Electron. 2(12), 580 (2019)
Li J., Hou S., R. Yao Y., Zhang C., Wu Q., C. Wang H., Zhang H., Liu X., Tang C., Wei M., Xu W., Wang Y., Zheng J., Pan Z., Kang L., Liu J., Shi J., Yang Y., J. Lambert C., Y. Xie S., and Hong W., Room-temperature logic-in-memory operations in single-metallofullerene devices, Nat. Mater. 21(8), 917 (2022) https://doi.org/10.1038/s41563-022-01309-y
Wu M. and Jena P., The rise of two-dimensional van der Waals ferroelectrics, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8(5), e1365 (2018) https://doi.org/10.1002/wcms.1365
8
C. Chiang C., Ostwal V., Wu P., S. Pang C., Zhang F., Chen Z., and Appenzeller J., Memory applications from 2D materials, Appl. Phys. Rev. 8(2), 021306 (2021) https://doi.org/10.1063/5.0038013
9
Qi L., Ruan S., and J. Zeng Y., Review on recent developments in 2D ferroelectrics: Theories and applications, Adv. Mater. 33(13), 2005098 (2021) https://doi.org/10.1002/adma.202005098
Tokura Y., Koshihara S., Iwasawa N., and Saito G., Domain-wall dynamics in organic charge-transfer compounds with one-dimensional ferroelectricity, Phys. Rev. Lett. 63(21), 2405 (1989) https://doi.org/10.1103/PhysRevLett.63.2405
12
Gorshunov B., Torgashev V., Zhukova E., Thomas V., Belyanchikov M., Kadlec C., Kadlec F., Savinov M., Ostapchuk T., Petzelt J., Prokleška J., V. Tomas P., V. Pestrjakov E., A. Fursenko D., S. Shakurov G., S. Prokhorov A., S. Gorelik V., S. Kadyrov L., V. Uskov V., K. Kremer R., and Dressel M., Incipient ferroelectricity of water molecules confined to nano-channels of beryl, Nat. Commun. 7(1), 12842 (2016) https://doi.org/10.1038/ncomms12842
13
A. Hernandez B., S. Chang K., R. Fisher E., and K. Dorhout P., Sol−gel template synthesis and characterization of BaTiO3 and PbTiO3 nanotubes, Chem. Mater. 14(2), 480 (2002) https://doi.org/10.1021/cm010998c
14
Jena P. and Sun Q., Super atomic clusters: Design rules and potential for building blocks of materials, Chem. Rev. 118(11), 5755 (2018) https://doi.org/10.1021/acs.chemrev.7b00524
Choi B., Lee K., Voevodin A., Wang J., L. Steigerwald M., Batail P., Zhu X., and Roy X., Two-dimensional hierarchical semiconductor with addressable surfaces, J. Am. Chem. Soc. 140(30), 9369 (2018) https://doi.org/10.1021/jacs.8b05010
18
J. Telford E., C. Russell J., R. Swann J., Fowler B., Wang X., Lee K., Zangiabadi A., Watanabe K., Taniguchi T., Nuckolls C., Batail P., Zhu X., A. Malen J., R. Dean C., and Roy X., Doping-induced superconductivity in the van der Waals superatomic crystal Re6Se8Cl2, Nano Lett. 20(3), 1718 (2020) https://doi.org/10.1021/acs.nanolett.9b04891
19
Zhong X., Lee K., Choi B., Meggiolaro D., Liu F., Nuckolls C., Pasupathy A., De Angelis F., Batail P., Roy X., and Zhu X., Superatomic two-dimensional semiconductor, Nano Lett. 18(2), 1483 (2018) https://doi.org/10.1021/acs.nanolett.7b05278
20
Roy X., H. Lee C., C. Crowther A., L. Schenck C., Besara T., A. Lalancette R., Siegrist T., W. Stephens P., E. Brus L., Kim P., L. Steigerwald M., and Nuckolls C., Nanoscale atoms in solid-state chemistry, Science 341(6142), 157 (2013) https://doi.org/10.1126/science.1236259
21
Guo Y., Du Q., Wang P., Zhou S., Zhao J., and Two-dimensional oxides assembled by M4 clusters (M= B,Mo, and Te), Phys. Rev. Res. 3(4), 043231 (2021) https://doi.org/10.1103/PhysRevResearch.3.043231
22
Du Q., Wang Z., Zhou S., Zhao J., and Kumar V., Searching for cluster Lego blocks for three-dimensional and two-dimensional assemblies, Phys. Rev. Mater. 5(6), 066001 (2021) https://doi.org/10.1103/PhysRevMaterials.5.066001
23
Chen X., Fei G., Song Y., Ying T., Huang D., Pan B., Yang D., Yang X., Chen K., Zhan X., Wang J., Zhang Q., Li Y., Gu L., Gou H., Chen X., Li S., Cheng J., Liu X., Hosono H., Guo J., and Chen X., Superatomic-charge-density-wave in cluster-assembled Au6Te12Se8 superconductors, J. Am. Chem. Soc. 144(45), 20915 (2022) https://doi.org/10.1021/jacs.2c09499
24
Xing S., Wu L., Wang Z., Chen X., Liu H., Han S., Lei L., Zhou L., Zheng Q., Huang L., Lin X., Chen S., Xie L., Chen X., J. Gao H., Cheng Z., Guo J., Wang S., and Ji W., Interweaving polar charge orders in a layered metallic superatomic crystal, Phys. Rev. X 12(4), 041034 (2022) https://doi.org/10.1103/PhysRevX.12.041034
25
Zhao Y., Guo Y., Qi Y., Jiang X., Su Y., and Zhao J., Coexistence of ferroelectricity and ferromagnetism in fullerene-based one-dimensional chains, Adv. Sci. (Weinh.) 10(21), 2301265 (2023) https://doi.org/10.1002/advs.202301265
Liese W., Dehnicke K., Walker I., Strähle J., and und kristallstruktur von rhenium (VII)-nitridchlorid Darstellung, ReNCl4, Z. Naturforsch. B. J. Chem. Sci. 34(5), 693 (1979) https://doi.org/10.1515/znb-1979-0509
29
Kresse G. and Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
30
Kresse G. and Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999) https://doi.org/10.1103/PhysRevB.59.1758
Heyd J., E. Scuseria G., and Ernzerhof M., Hybrid functionals based on a screened Coulomb potential, J. Chem. Phys. 118(18), 8207 (2003) https://doi.org/10.1063/1.1564060
33
Baroni S., de Gironcoli S., Dal Corso A., and Giannozzi P., Phonons and related crystal properties from density-functional perturbation theory, Rev. Mod. Phys. 73(2), 515 (2001) https://doi.org/10.1103/RevModPhys.73.515
34
Krishnan R., S. Binkley J., Seeger R., and A. Pople J., Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72(1), 650 (1980) https://doi.org/10.1063/1.438955
35
Dolg M., Wedig U., Stoll H., and Preuss H., Energy‐adjusted ab initio pseudopotentials for the first row transition elements, J. Chem. Phys. 86(2), 866 (1987) https://doi.org/10.1063/1.452288
36
Frisch M.Trucks G.Schlegel H.Scuseria G.Robb M. Cheeseman J.Scalmani G.Barone V.Petersson G.Nakatsuji H., Gaussian 16, Revision A. 03, Gaussian, Inc. Wallingford CT 3 (2016)
37
Tsukamoto T., Haruta N., Kambe T., Kuzume A., and Yamamoto K., Periodicity of molecular clusters based on symmetry-adapted orbital model, Nat. Commun. 10(1), 3727 (2019) https://doi.org/10.1038/s41467-019-11649-0
38
Henkelman G.Arnaldsson A.Jónsson H., A fast and robust algorithm for Bader decomposition of charge density, Comput. Mater. Sci. 36(3), 354 (2006)
39
Segall M., Shah R., J. Pickard C., and Payne M., Population analysis of plane-wave electronic structure calculations of bulk materials, Phys. Rev. B 54(23), 16317 (1996) https://doi.org/10.1103/PhysRevB.54.16317
Bruyer E., Di Sante D., Barone P., Stroppa A., H. Whangbo M., Picozzi S., of combining ferroelectricity Possibility, Rashba-like spin splitting in monolayers of the 1T-type transition-metal dichalcogenides MX2 (M= Mo, and W; X= S, Te), Phys. Rev. B 94(19), 195402 (2016) https://doi.org/10.1103/PhysRevB.94.195402
42
Fei R., Kang W., and Yang L., Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides, Phys. Rev. Lett. 117(9), 097601 (2016) https://doi.org/10.1103/PhysRevLett.117.097601
43
Wan W., Liu C., Xiao W., and Yao Y., Promising ferroelectricity in 2D group IV tellurides: A first-principles study, Appl. Phys. Lett. 111(13), 132904 (2017) https://doi.org/10.1063/1.4996171
J. Choi K., Biegalski M., L. Li Y., Sharan A., Schubert J., Uecker R., Reiche P., B. Chen Y., Q. Pan X., Gopalan V., Q. Chen L., G. Schlom D., and B. Eom C., Enhancement of ferroelectricity in strained BaTiO3 thin films, Science 306(5698), 1005 (2004) https://doi.org/10.1126/science.1103218
46
Rouquette J., Haines J., Bornand V., Pintard M., Papet P., G. Marshall W., and Hull S., Pressure-induced rotation of spontaneous polarization in monoclinic and triclinic PbZr0.52Ti0.48O3, Phys. Rev. B 71(2), 024112 (2005) https://doi.org/10.1103/PhysRevB.71.024112
47
Izyumskaya N., I. Alivov Y., J. Cho S., Morkoç H., Lee H., and S. Kang Y., Processing, structure, properties, and applications of PZT thin films, Crit. Rev. Solid State Mater. Sci. 32(3−4), 111 (2007) https://doi.org/10.1080/10408430701707347
48
Bersuker I., The Jahn−Teller Effect and Vibronic Interactions in Modern Chemistry, Springer Science & Business Media: 2013
Bao Y. and Zhang F., Electronic engineering of ABO3 perovskite metal oxides based on d0 electronic-configuration metallic ions toward photocatalytic water splitting under visible light, Small Struct. 3(6), 2100226 (2022) https://doi.org/10.1002/sstr.202100226
51
C. Wojdeł J. and Íñiguez J., Testing simple predictors for the temperature of a structural phase transition, Phys. Rev. B 90(1), 014105 (2014) https://doi.org/10.1103/PhysRevB.90.014105
A. N. Duerloo K., T. Ong M., and J. Reed E., Intrinsic piezoelectricity in two-dimensional materials, J. Phys. Chem. Lett. 3(19), 2871 (2012) https://doi.org/10.1021/jz3012436
54
M. Ok K., O. Chi E., and S. Halasyamani P., Bulk characterization methods for non-centrosymmetric materials: Second-harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity, Chem. Soc. Rev. 35(8), 710 (2006) https://doi.org/10.1039/b511119f