In this study, TiN/NbOx/Pt memristor devices with short-term memory (STM) and self-rectifying characteristics are used for reservoir computing. The STM characteristics of the device are detected using direct current sweep and pulse transients. The self-rectifying characteristics of the device can be explained by the work function differences between the TiN and Pt electrodes. Furthermore, neural network simulations were conducted for pattern recognition accuracy when the conductance was used as the synaptic weight. The emulation of synaptic memory and forgetfulness by short-term memory effects are demonstrated using paired-pulse facilitation and excitatory postsynaptic potential. The efficient training reservoir computing consisted of all 16 states (4-bit) in the memristor device as a physical reservoir and the artificial neural network simulation as a read-out layer and yielded a pattern recognition accuracy of 92.34% for the modified National Institute of Standards and Technology dataset. Finally, it is found that STM and long-term memory in the device coexist by adjusting the intensity of pulse stimulation.
Potentiation and depression, PPF, EPSC, SADP, SNDP
MNIST pattern-recognition simulation/4-bit reservoir computing with CNN
This work
Tab.1
Fig.6
Fig.7
1
Zou X., Xu S., Chen X., Yan L., and Han Y., Breaking the von Neumann bottleneck: Architecture-level processing-in-memory technology, Sci. China Inf. Sci. 64(6), 160404 (2021) https://doi.org/10.1007/s11432-020-3227-1
2
T. Zhang H., Panda P., Lin J., Kalcheim Y., Wang K., W. Freeland J., D. Fong D., Priya S., K. Schuller I., K. R. S. Sankaranarayanan S., Roy K., and Ramanathan S., Organismic materials for beyond von Neumann machines, Appl. Phys. Rev. 7(1), 011309 (2020) https://doi.org/10.1063/1.5113574
3
H. Radamson H., Zhu H., Wu Z., He X., Lin H., Liu J., Xiang J., Kong Z., Xiong W., Li J., Cui H., Gao J., Yang H., Du Y., Xu B., Li B., Zhao X., Yu J., Dong Y., and Wang G., State of the art and future perspectives in advanced CMOS technology, Nanomaterials 10(8), 1555 (2020) https://doi.org/10.3390/nano10081555
4
W. Sun S. and G. Y. Tsui P., Limitation of CMOS supply-voltage scaling by MOSFET threshold-voltage variation, IEEE J. Solid-State Circuits 30(8), 947 (1995) https://doi.org/10.1109/4.400439
5
Liu D., Yu H., and Chai Y., Low‐power computing with neuromorphic engineering, Adv. Intell. Syst. 3(2), 2000150 (2021) https://doi.org/10.1002/aisy.202000150
Zhu Y.Mao H.Zhu Y.Wang X.Fu C. Ke S.Wan C. Wan Q., CMOS-compatible neuromorphic devices for neuromorphic perception and computing: A review, Int. J. Extreme Manuf. 5(4), 042010 (2023)
8
Rao M., Tang H., Wu J., Song W., Zhang M., Yin W., Zhuo Y., Kiani F., Chen B., Jiang X., Liu H., Y. Chen H., Midya R., Ye F., Jiang H., Wang Z., Wu M., Hu M., Wang H., Xia Q., Ge N., Li J., and J. Yang J., Thousands of conductance levels in memristors integrated on CMOS, Nature 615(7954), 823 (2023) https://doi.org/10.1038/s41586-023-05759-5
9
Zhang X., Lu J., Wang Z., Wang R., Wei J., Shi T., Dou C., Wu Z., Zhu J., Shang D., Xing G., Chan M., Liu Q., and Liu M., Hybrid memristor-CMOS neurons for in-situ learning in fully hardware memristive spiking neural networks, Sci. Bull. (Beijing) 66(16), 1624 (2021) https://doi.org/10.1016/j.scib.2021.04.014
10
Mehonic A., Sebastian A., Rajendran B., Simeone O., Vasilaki E., and J. Kenyon A., Memristors — From in-memory computing, deep learning acceleration, and spiking neural networks to the future of neuromorphic and bio-inspired computing, Adv. Intell. Syst. 2(11), 2000085 (2020) https://doi.org/10.1002/aisy.202000085
11
Marković D., Mizrahi A., Querlioz D., and Grollier J., Physics for neuromorphic computing, Nat. Rev. Phys. 2(9), 499 (2020) https://doi.org/10.1038/s42254-020-0208-2
Wang Q., Niu G., Ren W., Wang R., Chen X., Li X., G. Ye Z., H. Xie Y., Song S., and Song Z., Phase change random access memory for neuro-inspired computing, Adv. Electron. Mater. 7(6), 2001241 (2021) https://doi.org/10.1002/aelm.202001241
14
Takashima D. and Kunishima I., High-density chain ferroelectric random access memory (Chain FRAM), IEEE J. Solid-State Circuits 33(5), 787 (1998) https://doi.org/10.1109/4.668994
15
Tehrani S., M. Slaughter J., Chen E., Durlam M., Shi J., and Deherrera M., Progress and outlook for MRAM technology, IEEE Trans. Magn. 35(5), 2814 (1999) https://doi.org/10.1109/20.800991
Wang H. and Yan X., Overview of resistive random access memory (RRAM): Materials, filament mechanisms, performance optimization, and prospects, Phys. Stat. Sol. 13(9), 1900073 (2019) https://doi.org/10.1002/pssr.201900073
18
M. Kim K., S. Jeong D., and S. Hwang C., Nanofilamentary resistive switching in binary oxide system: A review on the present status and outlook, Nanotechnology 22(25), 254002 (2011) https://doi.org/10.1088/0957-4484/22/25/254002
19
C. Wei W.J. Jhang C.R. Chen Y.X. Xue C.H. Sie S. L. Lee J.W. Kuo H.C. Lu C.F. Chang M.T. Tang K., A relaxed quantization training method for hardware limitations of resistive random access memory (ReRAM)-based computing-in-memory, IEEE J. Exploratory Solid-State Comput. Devices & Circuits 6(1), 45 (2020)
20
Zahoor F., Z. Azni Zulkifli T., and A. Khanday F., Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (Mlc) storage, modeling, and applications, Nanoscale Res. Lett. 15(1), 1 (2020) https://doi.org/10.1186/s11671-020-03299-9
21
Ji H., Lee Y., Heo J., and Kim S., Improved resistive and synaptic switching performances in bilayer ZrOx/HfOx devices, J. Alloys Compd. 962, 171096 (2023) https://doi.org/10.1016/j.jallcom.2023.171096
22
Cho H. and Kim S., Short-term memory dynamics of TiN/Ti/TiO2/SiOx/Si resistive random access memory, Nanomaterials 10(9), 1821 (2020) https://doi.org/10.3390/nano10091821
23
R. Lee S.B. Kim Y.Chang M.M. Kim K.B. Lee C. H. Hur J.S. Park G.Lee D.J. Lee M.J. Kim C. I. Chung U.K. Yoo I.Kim K., Multi-level switching of triple-layered TaOx RRAM with excellent reliability for storage class memory, Digest of Technical Papers - Symposium on VLSI Technology 2012, pp 71–72
24
Park J., Kwak M., Moon K., Woo J., Lee D., and Hwang H., TiOx-based RRAM synapse with 64-levels of conductance and symmetric conductance change by adopting a hybrid pulse scheme for neuromorphic computing, IEEE Electron Device Lett. 37(12), 1559 (2016) https://doi.org/10.1109/LED.2016.2622716
25
Wang C., Wu H., Gao B., Wu W., Dai L., Li X., and Qian H., Ultrafast RESET analysis of HfOx-based RRAM by sub-nanosecond pulses, Adv. Electr. Mater. 3(12), 1700263 (2017) https://doi.org/10.1002/aelm.201700263
26
T. Kim S.Cho J., Improvement of multi-level resistive switching characteristics in solution-processed AlOx-based non-volatile resistive memory using microwave irradiation, Semicond. Sci. Technol. 33, 015009 (2018)
27
Gao L., Y. Chen P., and Yu S., NbOx-based oscillation neuron for neuromorphic computing, Appl. Phys. Lett. 111(10), 103503 (2017) https://doi.org/10.1063/1.4991917
28
Herzig M., Weiher M., Ascoli A., Tetzlaff R., Mikolajick T., and Slesazeck S., Multiple slopes in the negative differential resistance region of NbOx-based threshold switches, J. Phys. D: Appl. Phys. 52, 325104 (2019) https://doi.org/10.1088/1361-6463/ab217a
29
Zhou Z., Yang M., Fu Z., Wang H., Ma X., and Gao H., Electrode-induced polarity conversion in Nb2O5/NbOx resistive switching devices, Appl. Phys. Lett. 117(24), 243502 (2020) https://doi.org/10.1063/5.0020501
30
Kumar S., Davila N., Wang Z., Huang X., P. Strachan J., Vine D., L. David Kilcoyne A., Nishi Y., and S. Williams R., Spatially uniform resistance switching of low current, high endurance titanium–niobium–oxide memristors, Nanoscale 9(5), 1793 (2017) https://doi.org/10.1039/C6NR07671H
31
C. Kozen A., R. Robinson Z., R. Glaser E., Twigg M., J. Larrabee T., Cho H., M. Prokes S., and B. Ruppalt L., In situ hydrogen plasma exposure for varying the stoichiometry of atomic layer deposited niobium oxide films for use in neuromorphic computing applications, ACS Appl. Mater. Interfaces 12(14), 16639 (2020) https://doi.org/10.1021/acsami.0c01279
J. Kim J., Y. Song E., J. Kim J., Y. Song E., and A. Kosten T., Stress effects in the hippocampus: Synaptic plasticity and memory, Stress 9(1), 1 (2006) https://doi.org/10.1080/10253890600678004
34
Di Filippo M., Picconi B., Tantucci M., Ghiglieri V., Bagetta V., Sgobio C., Tozzi A., Parnetti L., and Calabresi P., Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory, Behav. Brain Res. 199(1), 108 (2009) https://doi.org/10.1016/j.bbr.2008.09.025
35
Kwon O., Shin J., Chung D., and Kim S., Energy efficient short-term memory characteristics in Ag/SnOx/TiN RRAM for neuromorphic system, Ceram. Int. 48(20), 30482 (2022) https://doi.org/10.1016/j.ceramint.2022.06.328
36
Covi E.H. Lin Y.Wang W.Stecconi T.Milo V. Bricalli A.Ambrosi E.Pedretti G.-Y. Tseng T.Ielmini D., A Volatile RRAM Synapse for Neuromorphic Computing, IEEE, 2019
37
Y. Lin C., Chen J., H. Chen P., C. Chang T., Wu Y., K. Eshraghian J., Moon J., Yoo S., H. Wang Y., C. Chen W., Y. Wang Z., C. Huang H., Li Y., Miao X., D. Lu W., and M. Sze S., Adaptive synaptic memory via lithium ion modulation in RRAM devices, Small 16(42), 2003964 (2020) https://doi.org/10.1002/smll.202003964
38
Woo J., Moon K., Song J., Kwak M., Park J., and Hwang H., Optimized programming scheme enabling linear potentiation in filamentary HfO2 RRAM synapse for neuromorphic systems, IEEE Trans. Electron Dev. 63(12), 5064 (2016) https://doi.org/10.1109/TED.2016.2615648
39
He N., Ye F., Liu J., Sun T., Wang X., Hou W., Shao W., Wan X., Tong Y., Xu F., and Sheng Y., Multifunctional Ag–In–Zn–S/Cs3Cu2Cl5-based memristors with coexistence of non-volatile memory and volatile threshold switching behaviors for neuroinspired computing, Adv. Electron. Mater. 9(3), 2201038 (2023) https://doi.org/10.1002/aelm.202201038
40
He N., Ye F., Liu J., Sun T., Wang X., Hou W., Shao W., Wan X., Tong Y., Xu F., and Sheng Y., Multifunctional Ag−In−Zn−S/Cs3Cu2Cl5-based memristors with coexistence of non-volatile memory and volatile threshold switching behaviors for neuroinspired computing, Adv. Electr. Mater. 9(3), 2201038 (2023) https://doi.org/10.1002/aelm.202201038
41
Qu B., Du H., Wan T., Lin X., Younis A., and Chu D., Synaptic plasticity and learning behavior in transparent tungsten oxide-based memristors, Mater. Des. 129, 173 (2017) https://doi.org/10.1016/j.matdes.2017.05.022
42
Ramaraj S., Seo J., and Intensive-visible-light-responsive ANbO2N (A = Sr, Ba) synthesized from layered perovskite A5Nb4O15 for enhanced photoelectrochemical water splitting, J. Energy Chem. 68, 529 (2022) https://doi.org/10.1016/j.jechem.2021.12.015
43
So H., K. Lee J., and Kim S., Short-term memory characteristics in n-type-ZnO/p-type-NiO heterojunction synaptic devices for reservoir computing, Appl. Surf. Sci. 625, 157153 (2023) https://doi.org/10.1016/j.apsusc.2023.157153
44
Bagdzevicius S., Maas K., Boudard M., and Burriel M., Interface-type resistive switching in perovskite materials, J. Electroceramics 39, 157 (2022) https://doi.org/10.1007/s10832-017-0087-9
45
Kunwar S., Jernigan Z., Hughes Z., Somodi C., D. Saccone M., Caravelli F., Roy P., Zhang D., Wang H., Jia Q., L. MacManus-Driscoll J., Kenyon G., Sornborger A., Nie W., and Chen A., An interface-type memristive device for artificial synapse and neuromorphic computing, Adv. Intell. Syst. 5(8), 2370032 (2023) https://doi.org/10.1002/aisy.202370032
46
Calzolari A. and Catellani A., Controlling the TiN electrode work function at the atomistic level: A first principles investigation, IEEE Access 8, 156308 (2020) https://doi.org/10.1109/ACCESS.2020.3017726
Zhou Z., Yang M., Fu Z., Wang H., Ma X., and Gao H., Electrode-induced polarity conversion in Nb2O5/NbOx resistive switching devices, Appl. Phys. Lett. 117(24), 243502 (2020) https://doi.org/10.1063/5.0020501
49
Ryu H. and Kim S., Self-rectifying resistive switching and short-term memory characteristics in Pt/HfO2/TaOx/TiN artificial synaptic device, Nanomaterials 10(11), 2159 (2020) https://doi.org/10.3390/nano10112159
50
Kim J., Park Y., K. Lee J., and Kim S., Preliminary investigation on the implementation of an artificial synapse using TaOx-based memristor with thermally oxidized active layer, J. Chem. Phys. 159(21), 214711 (2023) https://doi.org/10.1063/5.0182699
51
Ismail M., Rasheed M., Mahata C., Kang M., and Kim S., Nano-crystalline ZnO memristor for neuromorphic computing: Resistive switching and conductance modulation, J. Alloys Compound. 960, 170846 (2023) https://doi.org/10.1016/j.jallcom.2023.170846
52
Basbaum A., Buckner R., Clapham D., De Camilli P., Everitt B., Kennedy M., Nadel L., O’leary D., Stern C., Tam P., W. Tsien R., and Yuste R., Reviews and comment from nature journals, Nat. Rev. Neurosci. 2, 751 (2001) https://doi.org/10.1038/35094594
53
Kim J., Kim D., K. Min K., Kraatz M., Han T., and Kim S., Effect of Al concentration on ferroelectric properties in HfAlOx-based ferroelectric tunnel junction devices for neuroinspired applications, Adv. Intell. Syst. 5(8), 2370036 (2023) https://doi.org/10.1002/aisy.202370036
54
Du C., Cai F., A. Zidan M., Ma W., H. Lee S., and D. Lu W., Reservoir computing using dynamic memristors for temporal information processing, Nat. Commun. 8, 2204 (2017) https://doi.org/10.1038/s41467-017-02337-y
55
Ismail M., Rasheed M., Mahata C., Kang M., and Kim S., Mimicking biological synapses with A-HfSiOx-based memristor: Implications for artificial intelligence and memory applications, Nano Convergence 10, 33 (2023) https://doi.org/10.1186/s40580-023-00380-8
56
Deswal S., Kumar A., and Kumar A., NbOx based memristor as artificial synapse emulating short term plasticity, AIP Adv. 9(9), 095022 (2019) https://doi.org/10.1063/1.5118980
57
Xu J., Zhu Y., Liu Y., Wang H., Zou Z., Ma H., Wu X., and Xiong R., Improved performance of NbOx resistive switching memory by in-situ N doping, Nanomaterials (Basel) 12(6), 1029 (2022) https://doi.org/10.3390/nano12061029
58
Deswal S., Jain A., Borkar H., Kumar A., and Kumar A., Conduction and switching mechanism in Nb2O5 thin films based resistive switches, Europhys. Lett. 116(1), 17003 (2016) https://doi.org/10.1209/0295-5075/116/17003
59
Xu J., Wang H., Zhu Y., Liu Y., Zou Z., Li G., and Xiong R., Tunable digital-to-analog switching in Nb2O5-based resistance switching devices by oxygen vacancy engineering, Appl. Surf. Sci. 579, 152114 (2022) https://doi.org/10.1016/j.apsusc.2021.152114
60
Xu J., Dong Z., Liu Y., Zhu Y., Wang H., Cheng J., Zheng C., and Xiong R., Conversion from memory to threshold resistance switching behavior by modulating compliance current, Appl. Phys. Lett. 123(20), 203501 (2023) https://doi.org/10.1063/5.0144784
61
N. Huang J., Wang T., M. Huang H., and Guo X., Adaptive SRM neuron based on NbOx memristive device for neuromorphic computing, Chip (Wurzbg.) 1(2), 100015 (2022) https://doi.org/10.1016/j.chip.2022.100015