Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2009, Vol. 4 Issue (1): 137-141   https://doi.org/10.1007/s11467-009-0006-x
  本期目录
Nonlinear property of slightly compressible media permeated with air-filled bubbles
Nonlinear property of slightly compressible media permeated with air-filled bubbles
Bo QIN (秦波,)
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
 全文: PDF(405 KB)   HTML
Abstract

Based on the nonlinear oscillation of an airfilled bubble in weakly compressible media at prestressed state, the effective medium method is used to study the nonlinear property of the slightly compressible media permeated with air bubbles. It is this nonlinear oscillation of air bubbles that results in the nonlinear property of the porous media. Numerical results have confirmed that the nonlinearity of the porous media is usually high, though the optimal porosity is very small. Moreover, the nonlinear property is greatly affected by the prestressed state, porosity, and shear modulus of the matrix media.

Key wordsslightly compressible media    porous media    effective medium method    nonlinear parameter
收稿日期: 2008-04-16      出版日期: 2009-03-05
Corresponding Author(s): null,Email:qinbo@nuaa.edu.cn   
 引用本文:   
. Nonlinear property of slightly compressible media permeated with air-filled bubbles[J]. Frontiers of Physics, 2009, 4(1): 137-141.
Bo QIN (秦波). Nonlinear property of slightly compressible media permeated with air-filled bubbles. Front. Phys. , 2009, 4(1): 137-141.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-009-0006-x
https://academic.hep.com.cn/fop/CN/Y2009/V4/I1/137
1 G. C. Gaunaurd and H. überall, J. Acoust. Soc. Am ., 1983, 74(1): 305
doi: 10.1121/1.389725
2 G. C. Gaunaurd and W. Wertman, J. Acoust. Soc. Am. , 1989, 85(2): 541
doi: 10.1121/1.397577
3 L. A. Ostrovskii, Sov. Phys. Acoust. , 1988, 34: 523
4 L. A. Ostrovskii, J. Acoust. Soc. Am. , 1991, 90: 3332
doi: 10.1121/1.401444
5 L. D. Landau and E. M. Lifshitz, Theory of elasticity, 3rd Ed ., New York: Pergamon, 1986
6 E. Meyer, K. Brendel, and K. Tamn, J. Acoust. Soc. Am. , 1958, 30: 1116
doi: 10.1121/1.1909475
7 J. S. Allen and R. A. Roy, J. Acoust. Soc. Am. , 2000, 107: 3167
doi: 10.1121/1.429344
8 J. S. Allen and R. A. Roy, J. Acoust. Soc. Am. , 2000, 108: 1640
doi: 10.1121/1.1289361
9 C. C. Church, J. Acoust. Soc. Am. , 1995, 97: 1510
doi: 10.1121/1.412091
10 D. B. Khismatullin and A. Nadim, Phys. Fluids , 2002, 14: 3534
doi: 10.1063/1.1503353
11 E. A. Zabolotskaya, Y. A. Llinskii, G. D. Meegan, and M. F. Hamilton, J. Acoust. Soc. Am. , 2005, 115: 2173
doi: 10.1121/1.2010348
12 S. Y. Emelianov, M. F. Hamilton, Y. A. Llinskii, and E. A. Zabolotskaya, J. Acoust. Soc. Am. , 2004, 115: 581
doi: 10.1121/1.1621858
13 B. Qin, J. Chen, and J. Cheng, Acous. Phys. , 2006, 52: 418
doi: 10.1134/S1063771006040075
14 M. Mooney, J. Appl. Phys. , 1940, 11: 582
doi: 10.1063/1.1712836
15 B. Qin, B. Liang, Z. Zhu, and J. Cheng, Front. Phys. China , 2006, 1: 500
doi: 10.1007/s11467-006-0050-8
16 Z. Fan, ., Acta Acust. United Ac. , 2006, 92: 217
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed