A first-principles study on the electronic structure of one-dimensional [TM(Bz)]∞ polymer (TM= Y, Zr, Nb, Mo, and Tc)
A first-principles study on the electronic structure of one-dimensional [TM(Bz)]∞ polymer (TM= Y, Zr, Nb, Mo, and Tc)
Fang WU (吴芳)1,2, Richard TJORNHAMMAR2, Er-jun KAN (阚二军)2, Zhen-yu LI (李震宇)2()
1. School of Science, Nanjing Forestry University, Nanjing 210037, China; 2. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
A systematic density functional theory (DFT) study has been performed to investigate the electronic and magnetic properties of one-dimensional sandwich polymers constructed with benzene (Bz) and the second-row transition metal (TM= Y, Zr, Nb, Mo, and Tc). Within the framework of generalized gradient approximation (GGA), [Tc(Bz)]∞ is a ferromagnetic half-metal, and [Nb(Bz)]∞ is a ferromagnetic metal. With the on-site Coulomb interaction for 4d TM atoms being taken into account, [Tc(Bz)]∞ keeps a robust half-metallic behavior, while [Nb(Bz)]∞ becomes a spin-selective semiconductor. The stability of the half-metallic [Tc(Bz)]∞ polymer is discussed based on magnetic anisotropy energy (MAE). Compared with 0.1 meV per metal atom in [Mn(Bz)]∞, the calculated MAE for [Tc(Bz)]∞ is 2.3 meV per metal atom. Such a significantly larger MAE suggests that Tc(Bz)]∞ is practically more promising than its first-row TM equivalent.
. A first-principles study on the electronic structure of one-dimensional [TM(Bz)]∞ polymer (TM= Y, Zr, Nb, Mo, and Tc)[J]. Frontiers of Physics, 2009, 4(3): 403-407.
Fang WU (吴芳), Richard TJORNHAMMAR, Er-jun KAN (阚二军), Zhen-yu LI (李震宇). A first-principles study on the electronic structure of one-dimensional [TM(Bz)]∞ polymer (TM= Y, Zr, Nb, Mo, and Tc). Front. Phys. , 2009, 4(3): 403-407.
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science , 2001, 294: 1488 doi: 10.1126/science.1065389
2
I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. , 2004, 76: 323 doi: 10.1103/RevModPhys.76.323
3
R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. , 1983, 50: 2024 doi: 10.1103/PhysRevLett.50.2024
4
E. J. Kan, H. J. Xiang, J. L. Yang, and J. G. Hou, J. Chem. Phys. , 2007, 127: 164706 doi: 10.1063/1.2789424
5
E. J. Kan, Z. Li, J. Yang, and J. G. Hou, Appl. Phys. Lett. , 2007, 91: 243116 doi: 10.1063/1.2821112
6
C. K. Yang, J. Zhao, and J. P. Lu, Nano Lett. , 2004, 4: 561 doi: 10.1021/nl035104x
H. J. Xiang, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Am. Chem. Soc. , 2006, 128: 2310 doi: 10.1021/ja054751i
9
L. Shen, S. W. Yang, M. F. Ng, V. Ligatchev, L. P. Zhou, and Y. P. Feng, J. Am. Chem. , 2008, 130: 13956 doi: 10.1021/ja804053a
10
L.Wang, Z. X. Cai, J. Y.Wang, J. Lu, G. F. Luo, L. Lai, J. Zhou, R. Qin, Z. X. Gao, D. P. Yu, G. P. Li,W. N. Mei, and S. Sanvito, Nano Lett. , 2008, 8: 3640 doi: 10.1021/nl8016016