Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study
Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study
Qing-Xiao Zhou1,2, Chao-Yang Wang2, Zhi-Bing Fu2, Yong-Jian Tang2, Hong Zhang1,3()
1. College of Physical Science and Technology, Sichuan University, Chengdu 610065, China; 2. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; 3. Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610064, China
The geometries, formation energies and electronic band structures of (8, 0) and (14, 0) single-walled carbon nanotubes (SWCNTs) with various defects, including vacancy, Stone–Wales defect, and octagon–pentagon pair defect, have been investigated within the framework of the density-functional theory (DFT), and the influence of the concentration within the same style of defect on the physical and chemical properties of SWCNTs is also studied. The results suggest that the existence of vacancy and octagon–pentagon pair defect both reduce the band gap, whereas the SW-defect induces a band gap opening in CNTs. More interestingly, the band gaps of (8, 0) and (14, 0) SWCNTs configurations with two octagon–pentagon pair defect presents 0.517 eV and 0.163 eV, which are a little smaller than the perfect CNTs. Furthermore, with the concentration of defects increasing, there is a decreasing of band gap making the two types of SWCNTs change from a semiconductor to a metallic conductor.
. Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study[J]. Frontiers of Physics, 2014, 9(2): 200-209.
Qing-Xiao Zhou, Chao-Yang Wang, Zhi-Bing Fu, Yong-Jian Tang, Hong Zhang. Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study. Front. Phys. , 2014, 9(2): 200-209.
R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. , 1998, 73(17): 2447 doi: 10.1063/1.122477
2
Y. W. Son, M. L. Cohen, and S. G. Louie, Electric field effects on spin transport in defective metallic carbon nanotubes, Nano Lett. , 2007, 7(11): 3518 doi: 10.1021/nl0721822
3
Z. W. Zhang, J. C. Li, and Q. Jiang, Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review, Front. Phys. , 2011, 6(2): 162 doi: 10.1007/s11467-011-0174-3
4
L. F. Huang and Z. Zheng, Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors, Front. Phys. , 2012, 7(3): 324 doi: 10.1007/s11467-011-0239-3
5
H. Zhu, K. Suenaga, A. Hashimoto, K. Urita, and S. Iijima, Structural identification of single and double-walled carbon nanotubes by high-resolution transmission electron microscopy, Chem. Phys. Lett. , 2005, 412(1-3): 116 doi: 10.1016/j.cplett.2005.06.119
6
M. Ouyang, Energy gaps in “metallic” single-walled carbon nanotubes, Science , 2001, 292(5517): 702 doi: 10.1126/science.1058853
7
J. Huang, S. Chen, Z. Ren, Z. Wang, K. Kempa, M. Naughton, G. Chen, and M. Dresselhaus, Enhanced ductile behavior of tensile-elongated individual double-walled and triple-walled carbon nanotubes at high emperatures, Phys. Rev. Lett. , 2007, 98(18): 185501 doi: 10.1103/PhysRevLett.98.185501
8
A. J. Stone and D. J. Wales, Theoretical studies of icosahedral C60 and some related species, Chem. Phys. Lett. , 1986, 128(5-6): 501 doi: 10.1016/0009-2614(86)80661-3
9
J. Lahiri, Y. Lin, P. Bozkurt, I. I. Oleynik, and M. Batzill, An extended defect in graphene as a metallic wire, Nat. Nanotechnol. , 2010, 53:1
10
M. T. Lusk, D. T. Wu, and L. D. Carr, Graphene nanoengineering and the inverse-Stone–Thrower–Wales defect, Phys. Rev. B , 2010, 81(15): 155444 doi: 10.1103/PhysRevB.81.155444
11
G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, and K. M. Ho, The role of pentagon–heptagon pair defect in carbon nanotube: The center of vacancy reconstruction, Appl. Phys. Lett. , 2010, 97(9): 093106 doi: 10.1063/1.3481799
12
A. V. Krasheninnikov and K. Nordlund, Ion and electron irradiation-induced effects in nanostructured materials, J. Appl. Phys. , 2010, 107(7): 071301 doi: 10.1063/1.3318261
13
A. Tolvanen, G. Buchs, P. Ruffieux, P. Gr?ning, O. Gr?ning, and A. Krasheninnikov, Modifying the electronic structure of semiconducting single-walled carbon nanotubes by Ar+ ion irradiation, Phys. Rev. B , 2009, 79(12): 125430 doi: 10.1103/PhysRevB.79.125430
14
C. X. Zhang, C. He, Z. Yu, L. Xue, K. W. Zhang, L. Z. Sun, and J. Zhong, Effects of oxygen-containing defect complex on the electronic structures and transport properties of single-walled carbon nanotubes, Phys. Lett. A , 2012, 376(20): 1686 doi: 10.1016/j.physleta.2012.03.052
15
M. Bockrath, Resonant electron scattering by defects in single-walled carbon nanotubes, Science , 2001, 291(5502): 283 doi: 10.1126/science.291.5502.283
16
S. Okada, K. Nakada, K. Kuwabara, K. Daigoku, and T. Kawai, Ferromagnetic spin ordering on carbon nanotubes with topological line defects, Phys. Rev. B , 2006, 74(12): 121412 doi: 10.1103/PhysRevB.74.121412
17
Y. Yang, Y. Xiao, W. Ren, X. Yan, and F. Pan, Halfmetallic chromium-chain-embedded wire in graphene and carbon nanotubes, Phys. Rev. B , 2011, 84(19): 195447 doi: 10.1103/PhysRevB.84.195447
18
W. Orellana, Reaction and incorporation of H2 molecules inside single-wall carbon nanotubes through multivacancy defects, Phys. Rev. B , 2009, 80(7): 075421 doi: 10.1103/PhysRevB.80.075421
19
K. Nishidate and M. Hasegawa, Energetics of lithium ion adsorption on defective carbon nanotubes, Phys. Rev. B , 2005, 71(24): 245418 doi: 10.1103/PhysRevB.71.245418
20
H. Choi, J. Ihm, S. G. Louie, and M. L. Cohen, Defects, quasibound states, and quantum conductance in metallic carbon nanotubes, Phys. Rev. Lett. , 2000, 84(13): 2917 doi: 10.1103/PhysRevLett.84.2917
21
G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, and K. M. Ho, The formation of pentagon-heptagon pair defect by the reconstruction of vacancy defects in carbon nanotube, Appl. Phys. Lett. , 2008, 92(4): 043104 doi: 10.1063/1.2837632
22
X. Qin, Q. Y. Meng, and W. Zhao, Effects of Stone–Wales defect upon adsorption of formaldehyde on graphene sheet with or without Al dopant: A first principle study, Surf. Sci. , 2011, 605(9-10): 930 doi: 10.1016/j.susc.2011.02.006
23
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. , 1996, 77(18): 3865 doi: 10.1103/PhysRevLett.77.3865
24
B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. , 2000, 113(18): 7756 doi: 10.1063/1.1316015
25
P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge: University of Ontario Press, 1999 doi: 10.1017/CBO9780511605819
26
E. Durgun, S. Dag, V. Bagci, O. Gülseren, T. Yildirim, and S. Ciraci, Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B , 2003, 67(20): 201401 doi: 10.1103/PhysRevB.67.201401
27
X. Blase, L. X. Benedict, E. L. Shirley, and S. G. Louie, Hybridization effects and metallicity in small radius carbon nanotubes, Phys. Rev. Lett. , 1994, 72(12): 1878 doi: 10.1103/PhysRevLett.72.1878
28
B. I. Yakobson, G. Samsonidze, and G. G. Samsonidze, Atomistic theory of mechanical relaxation in fullerene nanotubes, Carbon , 2000, 38(11-12): 1675 doi: 10.1016/S0008-6223(00)00093-2
29
G. G. Samsonidze, G. G. Samsonidze, and B. I. Yakobson, Energetics of Stone–Wales defects in deformations of monoatomic hexagonal layers, Comput. Mater. Sci. , 2002, 23(1-4): 62 doi: 10.1016/S0927-0256(01)00220-8
30
D. Tekleab, D. Carroll, G. Samsonidze, and B. Yakobson, Strain-induced electronic property heterogeneity of a carbon nanotube, Phys. Rev. B , 2001, 64(3): 035419 doi: 10.1103/PhysRevB.64.035419