Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (2): 130502   https://doi.org/10.1007/s11467-017-0729-z
  本期目录
Chimera states in Gaussian coupled map lattices
Xiao-Wen Li(), Ran Bi, Yue-Xiang Sun, Shuo Zhang, Qian-Qian Song
Department of Physics, Beijing Normal University, Beijing 100875, China
 全文: PDF(831 KB)  
Abstract

We study chimera states in one-dimensional and two-dimensional Gaussian coupled map lattices through simulations and experiments. Similar to the case of global coupling oscillators, individual lattices can be regarded as being controlled by a common mean field. A space-dependent order parameter is derived from a self-consistency condition in order to represent the collective state.

Key wordschimera state    coupled map lattices    nonlocal coupling
收稿日期: 2017-05-19      出版日期: 2017-12-08
Corresponding Author(s): Xiao-Wen Li   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(2): 130502.
Xiao-Wen Li, Ran Bi, Yue-Xiang Sun, Shuo Zhang, Qian-Qian Song. Chimera states in Gaussian coupled map lattices. Front. Phys. , 2018, 13(2): 130502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0729-z
https://academic.hep.com.cn/fop/CN/Y2018/V13/I2/130502
1 Y. Kuramoto and D. Battogtokh, Coexistence of coherence and incoherence in nonlocally coupled phase oscillators, Nonlin. Phenom. Complex Syst. 5(4), 380 (2002)
2 D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
https://doi.org/10.1103/PhysRevLett.93.174102
3 D. M. Abrams and S. H. Strogatz, Chimera states in a ring of nonlocally coupled oscillators, Int. J. Bifurcat. Chaos 16(01), 21 (2006)
https://doi.org/10.1142/S0218127406014551
4 D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett. 101(8), 084103 (2008)
https://doi.org/10.1103/PhysRevLett.101.084103
5 A. Pikovsky and M. Rosenblum, Partially integrable dynamics of hierarchical populations of coupled oscillators, Phys. Rev. Lett. 101(26), 264103 (2008)
https://doi.org/10.1103/PhysRevLett.101.264103
6 C. R. Laing, Chimera states in heterogeneous networks, Chaos 19(1), 013113 (2009)
https://doi.org/10.1063/1.3068353
7 S. i. Shima and Y. Kuramoto, Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators, Phys. Rev. E 69(3), 036213 (2004)
https://doi.org/10.1103/PhysRevE.69.036213
8 E. A. Martens, C. R. Laing, and S. H. Strogatz, Solvable model of spiral wave chimeras, Phys. Rev. Lett. 104(4), 044101 (2010)
https://doi.org/10.1103/PhysRevLett.104.044101
9 G. C. Sethia, A. Sen, and F. M. Atay, Clustered chimera states in delay-coupled oscillator systems, Phys. Rev. Lett. 100(14), 144102 (2008)
https://doi.org/10.1103/PhysRevLett.100.144102
10 C. H. Tian, X. Y. Zhang, Z. H. Wang, and Z. H. Liu, Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling, Front. Phys. 12(3), 128904 (2017)
https://doi.org/10.1007/s11467-017-0656-z
11 A. M. Hagerstrom, T. E. Murphy, R. Roy, P. Hövel, I. Omelchenko, and E. Schöll, Experimental observation of chimeras in coupled-map lattices, Nat. Phys. 8(9), 658 (2012)
12 Y. H. Ma, L.Q. Huang, C. M. Sun, and X. W. Li, Experimental system of coupled map lattices, Front. Phys. 10(3), 100504 (2015)
https://doi.org/10.1007/s11467-015-0466-0
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed