Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2018, Vol. 13 Issue (2): 137103   https://doi.org/10.1007/s11467-017-0734-2
  本期目录
Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons
Yue-Hua Su1(), Han-Tao Lu2()
1. Department of Physics, Yantai University, Yantai 264005, China
2. Center for Interdisciplinary Studies, Lanzhou University, Lanzhou 730000, China
 全文: PDF(253 KB)  
Abstract

One challenge in contemporary condensed matter physics is to understand unconventional electronic physics beyond the paradigm of Landau Fermi-liquid theory. Here, we present a perspective that posits that most such examples of unconventional electronic physics stem from restrictions on the degrees of freedom of quantum electrons in Landau Fermi liquids. Since the degrees of freedom are deeply connected to the system’s symmetries and topology, these restrictions can thus be realized by external constraints or by interaction-driven processes via the following mechanisms: (i) symmetry breaking, (ii) new emergent symmetries, and (iii) nontrivial topology. Various examples of unconventional electronic physics beyond the reach of traditional Landau Fermi liquid theory are extensively investigated from this point of view. Our perspective yields basic pathways to study the breakdown of Landau Fermi liquids and also provides a guiding principle in the search for novel electronic systems and devices.

Key wordsbreakdown of the Landau Fermi liquids    degrees of freedom    symmetry    topology
收稿日期: 2017-05-24      出版日期: 2017-12-08
Corresponding Author(s): Yue-Hua Su,Han-Tao Lu   
 引用本文:   
. [J]. Frontiers of Physics, 2018, 13(2): 137103.
Yue-Hua Su, Han-Tao Lu. Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons. Front. Phys. , 2018, 13(2): 137103.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-017-0734-2
https://academic.hep.com.cn/fop/CN/Y2018/V13/I2/137103
1 J. P. Landau, The theory of a Fermi liquid, Sov. Phys. JETP 30, 1058 (1956)
2 J. P. Landau, Oscillations in a Fermi liquid, Sov. Phys. JETP 32, 59 (1957)
3 J. P. Landau, On the theory of the Fermi liquid, Sov. Phys. JETP 35, 97 (1958)
4 P. Coleman, Introduction to Many Body Physics, Chapter 6, 1st Ed., Cambridge: Cambridge University Press, 2015
https://doi.org/10.1017/CBO9781139020916
5 A. A. Abrikosov, L. P. Gor’kov, and I. Ye. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, 2nd Ed., Perpamon Press Ltd., 1965
6 R. Shankar, Renormalization-group approach to interacting fermions, Rev. Mod. Phys. 66(1), 129 (1994)
https://doi.org/10.1103/RevModPhys.66.129
7 C. M. Varma, Z. Nussinov, and W. van Saarloos, Singular or non-Fermi liquids, Phys. Rep. 361(5–6), 267 (2002)
https://doi.org/10.1016/S0370-1573(01)00060-6
8 G. R. Stewart, Non-Fermi-liquid behavior in d- and f electron metals, Rev. Mod. Phys. 73(4), 797 (2001)
https://doi.org/10.1103/RevModPhys.73.797
9 J. Voit, One-dimensional Fermi liquids, Rep. Prog. Phys. 57, 977 (1994)
10 E. Abrahams (Ed.), Lecture Notes in 50 Years of Anderson Localization, 1st Ed., Singapore: World Scientific, 2010
11 P. Coleman, Heavy fermions and the Kondo lattice: A 21st century perspective, in: Lecture Notes for Autumn School on Correlated Electrons: Many-Body Physics: From Kondo to Hubbard, arXiv: 1509.05769 (2015)
12 B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to hightemperature superconductivity in copper oxides, Nature 518(7538), 179 (2015)
https://doi.org/10.1038/nature14165
13 M. R. Norman, Novel superfluids, pp 23–79, arXiv: 1302.3176, 2nd Ed., edited by K. H. Bennemann and J. B. Ketterson, Oxford: Oxford University Press, 2014
14 P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high-temperature superconducting cuprates: The “plain vanilla” version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004)
https://doi.org/10.1088/0953-8984/16/24/R02
15 P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006)
https://doi.org/10.1103/RevModPhys.78.17
16 X. H. Chen, P. C. Dai, D. L. Feng, T. Xiang, and F. C. Zhang, Iron based high transition temperature superconductors, Natl. Sci. Rev. 1(3), 371 (2014)
https://doi.org/10.1093/nsr/nwu007
17 G. R. Stewart, Superconductivity in iron compounds, Rev. Mod. Phys. 83(4), 1589 (2011)
https://doi.org/10.1103/RevModPhys.83.1589
18 K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
https://doi.org/10.1103/PhysRevLett.45.494
19 D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982)
https://doi.org/10.1103/PhysRevLett.48.1559
20 F. D. M. Haldane, Luttinger liquid theory of one dimensional quantum fluids (I): properties of the Luttinger model and their extension to the general 1D interacting spin-less Fermi gas, J. Phys. C 14(19), 2585 (1981)
https://doi.org/10.1088/0022-3719/14/19/010
21 R. E. Prange, M. E. Cage, K. Klitzing, S. M. Girvin, A. M. Chang, F. Duncan, M. Haldane, R. B. Laughlin, A. M. M. Pruisken, and D. J. Thouless, The Quantum Hall Effect, 2nd Ed., edited by R. E. Prange and S. M. Girvin, Graduate Texts in Contemporary Physics, New York: Springer, 1990
https://doi.org/10.1007/978-1-4612-3350-3
22 J. K. Jain, Composite Fermions, 1st Ed., Cambridge University Press, 2007
https://doi.org/10.1017/CBO9780511607561
23 L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd Ed., Course of Theoretical Physics, Vol. 5, Beijing World Publishing Corporation by arrangement with Betterworth-Heinemann, 1999
24 K. G. Wilson and J. Kogut, The renormalization group and the e expansion, Phys. Rep. 12(2), 75 (1974)
https://doi.org/10.1016/0370-1573(74)90023-4
25 P. A. M. Dirac, The Principles of Quantum Mechanics, 4th Ed., Science Press, 2008
26 S. Weinberg, Lectures on Quantum Mechanics, 1st Ed., New York: Cambridge University Press, 2013
27 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
https://doi.org/10.1103/PhysRevLett.49.405
28 J. E. Avron, D. Osadchy, and R. Seiler, A topological look at the quantum Hall effect, Phys. Today 56(8), 38 (2003)
https://doi.org/10.1063/1.1611351
29 A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78(19), 195125 (2008)
https://doi.org/10.1103/PhysRevB.78.195125
30 A. Kitaev, V. Lebedev, and M. Feigel’man, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134, 22 (2009)
https://doi.org/10.1063/1.3149495
31 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
32 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
33 C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
https://doi.org/10.1103/RevModPhys.88.035005
34 A. Zee, Group Theory in a Nutshell for Physicists, 1st Ed., Princeton: Princeton University Press, 2016
35 I. Ia. Pomeranchuk, On the stability of a Fermi liquid, Sov. Phys. JETP 8, 361 (1959)
36 C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors, Phys. Rev. Lett. 63(18), 1996 (1989)
https://doi.org/10.1103/PhysRevLett.63.1996
37 A. V. Chubukov, D. Pines, and J. Schmalian, A spin fluctuation model for D-wave superconductivity, arXiv: cond-mat/0201140, 1st Ed., edited by K. H. Bennemann and J. B. Ketterson, Springer-Verlag, 2002
38 K. Y. Yang, T. M. Rice, and F. C. Zhang, Phenomenological theory of the pseudogap state, Phys. Rev. B 73(17), 174501 (2006)
https://doi.org/10.1103/PhysRevB.73.174501
39 P. A. Bares and X. G. Wen, Breakdown of the Fermi liquid due to long-range interactions, Phys. Rev. B 48(12), 8636 (1993)
https://doi.org/10.1103/PhysRevB.48.8636
40 P. W. Anderson, Hidden Fermi liquid: The secret of high-Tc cuprates, Phys. Rev. B 78(17), 174505 (2008)
https://doi.org/10.1103/PhysRevB.78.174505
41 K. Limtragool, C. Setty, Z. Leong, and P. W. Phillips, Realizing infrared power-law liquids in the cuprates from unparticle interactions, Phys. Rev. B 94(23), 235121 (2016)
https://doi.org/10.1103/PhysRevB.94.235121
42 M. E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70(2), 653 (1998)
https://doi.org/10.1103/RevModPhys.70.653
43 S. K. Ma, Modern Theory of Critical Phenomena, 1st Ed., edited by D. Pines, Advanced Book Program, Westview Press,2000
44 N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, 1st Ed., Advanced Book Program, Perseus Books, Reading, Massachusetts, 1992
45 M. Suzuki, Phase transition and fractals, Prog. Theor. Phys. 69(1), 65 (1983)
https://doi.org/10.1143/PTP.69.65
46 H. Kröger, Fractal geometry in quantum mechanics, field theory and spin systems, Phys. Rep. 323(2), 81 (2000)
https://doi.org/10.1016/S0370-1573(99)00051-4
47 P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109(5), 1492 (1958)
https://doi.org/10.1103/PhysRev.109.1492
48 A. Lagendijk, B. Tiggelen, and D. S. Wiersma, Fifty years of Anderson localization, Phys. Today 62(8), 24 (2009)
https://doi.org/10.1063/1.3206091
49 E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42(10), 673 (1979)
https://doi.org/10.1103/PhysRevLett.42.673
50 N. Mott, The mobility edge since 1967, J. Phys. C 20(21), 3075 (1987)
https://doi.org/10.1088/0022-3719/20/21/008
51 D. Vollhardt and P. Wölfle, Diagrammatic, selfconsistent treatment of the Anderson localization problem in d≤2 dimensions, Phys. Rev. B 22(10), 4666 (1980)
https://doi.org/10.1103/PhysRevB.22.4666
52 D. Vollhardt and P. Wölfle, Scaling equations from a self-consistent theory of Anderson localization, Phys. Rev. Lett. 48(10), 699 (1982)
https://doi.org/10.1103/PhysRevLett.48.699
53 R. Abou-Chacra, D. J. Thouless, and P. W. Anderson, A self-consistent theory of localization, J. Phys. C 6(10), 1734 (1973)
54 F. Evers and A. D. Mirlin, Anderson transitions, Rev. Mod. Phys. 80(4), 1355 (2008)
https://doi.org/10.1103/RevModPhys.80.1355
55 W. De Roeck, F. Huveneers, M. Müller, and M. Schiulaz, Absence of many-body mobility edges, Phys. Rev. B 93(1), 014203 (2016)
https://doi.org/10.1103/PhysRevB.93.014203
56 X. P. Li, J. H. Pixley, D. L. Deng, S. Ganeshan, and S. Das Sarma, Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge, Phys. Rev. B 93(18), 184204 (2016)
https://doi.org/10.1103/PhysRevB.93.184204
57 N. D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys. 51(3), 591 (1979)
https://doi.org/10.1103/RevModPhys.51.591
58 J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6(7), 1181 (1973)
https://doi.org/10.1088/0022-3719/6/7/010
59 J. E. Avron, R. Seiler, and B. Simon, Homotopy and quantization in condensed matter physics, Phys. Rev. Lett. 51(1), 51 (1983)
https://doi.org/10.1103/PhysRevLett.51.51
60 R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50(18), 1395 (1983)
https://doi.org/10.1103/PhysRevLett.50.1395
61 J. K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63(2), 199 (1989)
https://doi.org/10.1103/PhysRevLett.63.199
62 S. C. Zhang, T. H. Hansson, and S. Kivelson, Effective field-theory model for the fractional quantum Hall effect, Phys. Rev. Lett. 62(1), 82 (1989)
https://doi.org/10.1103/PhysRevLett.62.82
63 C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008)
https://doi.org/10.1103/RevModPhys.80.1083
64 E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Nematic Fermi fluids in condensed matter physics, Annu. Rev. Condens. Matter Phys. 1(1), 153 (2010)
https://doi.org/10.1146/annurev-conmatphys-070909-103925
65 V. Oganesyan, S. A. Kivelson, and E. Fradkin, Quantum theory of a nematic Fermi fluid, Phys. Rev. B 64(19), 195109 (2001)
https://doi.org/10.1103/PhysRevB.64.195109
66 H. Watanabe and A. Vishwanath, Criterion for stability of Goldstone modes and Fermi liquid behavior in a metal with broken symmetry, Proc. Natl. Acad. Sci. USA 111(46), 16314 (2014)
https://doi.org/10.1073/pnas.1415592111
67 M. J. Lawler, D. G. Barci, V. Fernández, E. Fradkin, and L. Oxman, Non-perturbative behavior of the quantum phase transition to a nematic Fermi fluid, Phys. Rev. B 73(8), 085101 (2006)
https://doi.org/10.1103/PhysRevB.73.085101
68 M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys. 63(2), 239 (1991)
https://doi.org/10.1103/RevModPhys.63.239
69 P. W. Anderson, Random-phase approximation in the theory of superconductivity, Phys. Rev. 112(6), 1900 (1958)
https://doi.org/10.1103/PhysRev.112.1900
70 P. B. Littlewood and C. M. Varma, Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity, Phys. Rev. Lett. 47(11), 811 (1981)
https://doi.org/10.1103/PhysRevLett.47.811
71 P. B. Littlewood and C. M. Varma, Amplitude collective modes in superconductors and their coupling to charge density waves, Phys. Rev. B 26(9), 4883 (1982)
https://doi.org/10.1103/PhysRevB.26.4883
72 M. C. Gutzwiller, Effect of correlation on the ferromagnetism of transition metals, Phys. Rev. Lett. 10(5), 159 (1963)
https://doi.org/10.1103/PhysRevLett.10.159
73 P. W. Anderson, The resonating valence bond state in La2CuO4 and superconductivity, Science 235(4793), 1196 (1987)
https://doi.org/10.1126/science.235.4793.1196
74 D. Vollhardt, Normal 3He: An almost localized Fermi liquid, Rev. Mod. Phys. 56(1), 99 (1984)
https://doi.org/10.1103/RevModPhys.56.99
75 B. Edegger, V. N. Muthukumar, and C. Gros, Gutzwiller-RVB theory of high-temperature superconductivity: Results from renormalized mean-field theory and variational Monte Carlo calculations, Adv. Phys. 56(6), 927 (2007)
https://doi.org/10.1080/00018730701627707
76 H. Y. Yang, F. Yang, Y. J. Jiang, and T. Li, On the origin of the tunnelling asymmetry in the cuprate superconductors: A variational perspective, J. Phys.: Condens. Matter 19(1), 016217 (2007)
https://doi.org/10.1088/0953-8984/19/1/016217
77 S. Yunoki, Single-particle anomalous excitations of Gutzwiller-projected BCS superconductors and Bogoliubov quasiparticle characteristics, Phys. Rev. B 74(18), 180504 (2006)
https://doi.org/10.1103/PhysRevB.74.180504
78 S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Enhancement of superconductivity near a nematic quantum critical point, Phys. Rev. Lett. 114(9), 097001 (2015)
https://doi.org/10.1103/PhysRevLett.114.097001
79 A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, 1st Ed., Cambridge: Cambridge University Press, 1995
80 P. W. Anderson and P. A. Casey, Transport anomalies of the strange metal: Resolution by hidden Fermi liquid theory, Phys. Rev. B 80(9), 094508 (2009)
https://doi.org/10.1103/PhysRevB.80.094508
81 J. K. Jain and P. W. Anderson, Beyond the Fermi liquid paradigm: Hidden Fermi liquids, Proc. Natl. Acad. Sci. USA 106(23), 9131 (2009)
https://doi.org/10.1073/pnas.0902901106
82 P. Coleman, Introduction to Many Body Physics, Chapter 16 and 17, 1st Ed., Cambridge: Cambridge University Press, 2015
https://doi.org/10.1017/CBO9781139020916
83 P. W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem, J. Phys. C 3(12), 2436 (1970)
https://doi.org/10.1088/0022-3719/3/12/008
84 Q. M. Si, S. Rabello, K. Ingersent, and J. L. Smith, Local fluctuations in quantum critical metals, Phys. Rev. B 68(11), 115103 (2003)
https://doi.org/10.1103/PhysRevB.68.115103
85 P. Nozières, A “Fermi-liquid” description of the Kondo problem at low temperatures, J. Low Temp. Phys. 17(1–2), 31 (1974)
https://doi.org/10.1007/BF00654541
86 Y. F. Yang and D. Pines, Emergent states in heavyelectron materials, Proc. Natl. Acad. Sci. USA 109(45), E3060 (2012)
https://doi.org/10.1073/pnas.1211186109
87 Y. F. Yang and D. Pines, Quantum critical behavior in heavy electron materials, Proc. Natl. Acad. Sci. USA 111(23), 8398 (2014)
https://doi.org/10.1073/pnas.1407561111
88 H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007)
https://doi.org/10.1103/RevModPhys.79.1015
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed