One challenge in contemporary condensed matter physics is to understand unconventional electronic physics beyond the paradigm of Landau Fermi-liquid theory. Here, we present a perspective that posits that most such examples of unconventional electronic physics stem from restrictions on the degrees of freedom of quantum electrons in Landau Fermi liquids. Since the degrees of freedom are deeply connected to the system’s symmetries and topology, these restrictions can thus be realized by external constraints or by interaction-driven processes via the following mechanisms: (i) symmetry breaking, (ii) new emergent symmetries, and (iii) nontrivial topology. Various examples of unconventional electronic physics beyond the reach of traditional Landau Fermi liquid theory are extensively investigated from this point of view. Our perspective yields basic pathways to study the breakdown of Landau Fermi liquids and also provides a guiding principle in the search for novel electronic systems and devices.
. [J]. Frontiers of Physics, 2018, 13(2): 137103.
Yue-Hua Su, Han-Tao Lu. Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons. Front. Phys. , 2018, 13(2): 137103.
A. A. Abrikosov, L. P. Gor’kov, and I. Ye. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, 2nd Ed., Perpamon Press Ltd., 1965
E. Abrahams (Ed.), Lecture Notes in 50 Years of Anderson Localization, 1st Ed., Singapore: World Scientific, 2010
11
P. Coleman, Heavy fermions and the Kondo lattice: A 21st century perspective, in: Lecture Notes for Autumn School on Correlated Electrons: Many-Body Physics: From Kondo to Hubbard, arXiv: 1509.05769 (2015)
12
B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, From quantum matter to hightemperature superconductivity in copper oxides, Nature 518(7538), 179 (2015) https://doi.org/10.1038/nature14165
13
M. R. Norman, Novel superfluids, pp 23–79, arXiv: 1302.3176, 2nd Ed., edited by K. H. Bennemann and J. B. Ketterson, Oxford: Oxford University Press, 2014
14
P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics behind high-temperature superconducting cuprates: The “plain vanilla” version of RVB, J. Phys.: Condens. Matter 16(24), R755 (2004) https://doi.org/10.1088/0953-8984/16/24/R02
15
P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys. 78(1), 17 (2006) https://doi.org/10.1103/RevModPhys.78.17
16
X. H. Chen, P. C. Dai, D. L. Feng, T. Xiang, and F. C. Zhang, Iron based high transition temperature superconductors, Natl. Sci. Rev. 1(3), 371 (2014) https://doi.org/10.1093/nsr/nwu007
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980) https://doi.org/10.1103/PhysRevLett.45.494
19
D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559 (1982) https://doi.org/10.1103/PhysRevLett.48.1559
20
F. D. M. Haldane, Luttinger liquid theory of one dimensional quantum fluids (I): properties of the Luttinger model and their extension to the general 1D interacting spin-less Fermi gas, J. Phys. C 14(19), 2585 (1981) https://doi.org/10.1088/0022-3719/14/19/010
21
R. E. Prange, M. E. Cage, K. Klitzing, S. M. Girvin, A. M. Chang, F. Duncan, M. Haldane, R. B. Laughlin, A. M. M. Pruisken, and D. J. Thouless, The Quantum Hall Effect, 2nd Ed., edited by R. E. Prange and S. M. Girvin, Graduate Texts in Contemporary Physics, New York: Springer, 1990 https://doi.org/10.1007/978-1-4612-3350-3
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1, 3rd Ed., Course of Theoretical Physics, Vol. 5, Beijing World Publishing Corporation by arrangement with Betterworth-Heinemann, 1999
P. A. M. Dirac, The Principles of Quantum Mechanics, 4th Ed., Science Press, 2008
26
S. Weinberg, Lectures on Quantum Mechanics, 1st Ed., New York: Cambridge University Press, 2013
27
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982) https://doi.org/10.1103/PhysRevLett.49.405
28
J. E. Avron, D. Osadchy, and R. Seiler, A topological look at the quantum Hall effect, Phys. Today 56(8), 38 (2003) https://doi.org/10.1063/1.1611351
29
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78(19), 195125 (2008) https://doi.org/10.1103/PhysRevB.78.195125
30
A. Kitaev, V. Lebedev, and M. Feigel’man, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134, 22 (2009) https://doi.org/10.1063/1.3149495
C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016) https://doi.org/10.1103/RevModPhys.88.035005
34
A. Zee, Group Theory in a Nutshell for Physicists, 1st Ed., Princeton: Princeton University Press, 2016
35
I. Ia. Pomeranchuk, On the stability of a Fermi liquid, Sov. Phys. JETP 8, 361 (1959)
36
C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Ruckenstein, Phenomenology of the normal state of Cu-O high-temperature superconductors, Phys. Rev. Lett. 63(18), 1996 (1989) https://doi.org/10.1103/PhysRevLett.63.1996
37
A. V. Chubukov, D. Pines, and J. Schmalian, A spin fluctuation model for D-wave superconductivity, arXiv: cond-mat/0201140, 1st Ed., edited by K. H. Bennemann and J. B. Ketterson, Springer-Verlag, 2002
P. A. Bares and X. G. Wen, Breakdown of the Fermi liquid due to long-range interactions, Phys. Rev. B 48(12), 8636 (1993) https://doi.org/10.1103/PhysRevB.48.8636
K. Limtragool, C. Setty, Z. Leong, and P. W. Phillips, Realizing infrared power-law liquids in the cuprates from unparticle interactions, Phys. Rev. B 94(23), 235121 (2016) https://doi.org/10.1103/PhysRevB.94.235121
42
M. E. Fisher, Renormalization group theory: Its basis and formulation in statistical physics, Rev. Mod. Phys. 70(2), 653 (1998) https://doi.org/10.1103/RevModPhys.70.653
43
S. K. Ma, Modern Theory of Critical Phenomena, 1st Ed., edited by D. Pines, Advanced Book Program, Westview Press,2000
44
N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, 1st Ed., Advanced Book Program, Perseus Books, Reading, Massachusetts, 1992
A. Lagendijk, B. Tiggelen, and D. S. Wiersma, Fifty years of Anderson localization, Phys. Today 62(8), 24 (2009) https://doi.org/10.1063/1.3206091
49
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett. 42(10), 673 (1979) https://doi.org/10.1103/PhysRevLett.42.673
D. Vollhardt and P. Wölfle, Diagrammatic, selfconsistent treatment of the Anderson localization problem in d≤2 dimensions, Phys. Rev. B 22(10), 4666 (1980) https://doi.org/10.1103/PhysRevB.22.4666
52
D. Vollhardt and P. Wölfle, Scaling equations from a self-consistent theory of Anderson localization, Phys. Rev. Lett. 48(10), 699 (1982) https://doi.org/10.1103/PhysRevLett.48.699
53
R. Abou-Chacra, D. J. Thouless, and P. W. Anderson, A self-consistent theory of localization, J. Phys. C 6(10), 1734 (1973)
W. De Roeck, F. Huveneers, M. Müller, and M. Schiulaz, Absence of many-body mobility edges, Phys. Rev. B 93(1), 014203 (2016) https://doi.org/10.1103/PhysRevB.93.014203
56
X. P. Li, J. H. Pixley, D. L. Deng, S. Ganeshan, and S. Das Sarma, Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge, Phys. Rev. B 93(18), 184204 (2016) https://doi.org/10.1103/PhysRevB.93.184204
J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6(7), 1181 (1973) https://doi.org/10.1088/0022-3719/6/7/010
59
J. E. Avron, R. Seiler, and B. Simon, Homotopy and quantization in condensed matter physics, Phys. Rev. Lett. 51(1), 51 (1983) https://doi.org/10.1103/PhysRevLett.51.51
60
R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50(18), 1395 (1983) https://doi.org/10.1103/PhysRevLett.50.1395
S. C. Zhang, T. H. Hansson, and S. Kivelson, Effective field-theory model for the fractional quantum Hall effect, Phys. Rev. Lett. 62(1), 82 (1989) https://doi.org/10.1103/PhysRevLett.62.82
63
C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008) https://doi.org/10.1103/RevModPhys.80.1083
64
E. Fradkin, S. A. Kivelson, M. J. Lawler, J. P. Eisenstein, and A. P. Mackenzie, Nematic Fermi fluids in condensed matter physics, Annu. Rev. Condens. Matter Phys. 1(1), 153 (2010) https://doi.org/10.1146/annurev-conmatphys-070909-103925
H. Watanabe and A. Vishwanath, Criterion for stability of Goldstone modes and Fermi liquid behavior in a metal with broken symmetry, Proc. Natl. Acad. Sci. USA 111(46), 16314 (2014) https://doi.org/10.1073/pnas.1415592111
67
M. J. Lawler, D. G. Barci, V. Fernández, E. Fradkin, and L. Oxman, Non-perturbative behavior of the quantum phase transition to a nematic Fermi fluid, Phys. Rev. B 73(8), 085101 (2006) https://doi.org/10.1103/PhysRevB.73.085101
P. B. Littlewood and C. M. Varma, Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity, Phys. Rev. Lett. 47(11), 811 (1981) https://doi.org/10.1103/PhysRevLett.47.811
71
P. B. Littlewood and C. M. Varma, Amplitude collective modes in superconductors and their coupling to charge density waves, Phys. Rev. B 26(9), 4883 (1982) https://doi.org/10.1103/PhysRevB.26.4883
B. Edegger, V. N. Muthukumar, and C. Gros, Gutzwiller-RVB theory of high-temperature superconductivity: Results from renormalized mean-field theory and variational Monte Carlo calculations, Adv. Phys. 56(6), 927 (2007) https://doi.org/10.1080/00018730701627707
76
H. Y. Yang, F. Yang, Y. J. Jiang, and T. Li, On the origin of the tunnelling asymmetry in the cuprate superconductors: A variational perspective, J. Phys.: Condens. Matter 19(1), 016217 (2007) https://doi.org/10.1088/0953-8984/19/1/016217
77
S. Yunoki, Single-particle anomalous excitations of Gutzwiller-projected BCS superconductors and Bogoliubov quasiparticle characteristics, Phys. Rev. B 74(18), 180504 (2006) https://doi.org/10.1103/PhysRevB.74.180504
78
S. Lederer, Y. Schattner, E. Berg, and S. A. Kivelson, Enhancement of superconductivity near a nematic quantum critical point, Phys. Rev. Lett. 114(9), 097001 (2015) https://doi.org/10.1103/PhysRevLett.114.097001
79
A. M. Tsvelik, Quantum Field Theory in Condensed Matter Physics, 1st Ed., Cambridge: Cambridge University Press, 1995
80
P. W. Anderson and P. A. Casey, Transport anomalies of the strange metal: Resolution by hidden Fermi liquid theory, Phys. Rev. B 80(9), 094508 (2009) https://doi.org/10.1103/PhysRevB.80.094508
81
J. K. Jain and P. W. Anderson, Beyond the Fermi liquid paradigm: Hidden Fermi liquids, Proc. Natl. Acad. Sci. USA 106(23), 9131 (2009) https://doi.org/10.1073/pnas.0902901106
Q. M. Si, S. Rabello, K. Ingersent, and J. L. Smith, Local fluctuations in quantum critical metals, Phys. Rev. B 68(11), 115103 (2003) https://doi.org/10.1103/PhysRevB.68.115103
85
P. Nozières, A “Fermi-liquid” description of the Kondo problem at low temperatures, J. Low Temp. Phys. 17(1–2), 31 (1974) https://doi.org/10.1007/BF00654541
86
Y. F. Yang and D. Pines, Emergent states in heavyelectron materials, Proc. Natl. Acad. Sci. USA 109(45), E3060 (2012) https://doi.org/10.1073/pnas.1211186109
87
Y. F. Yang and D. Pines, Quantum critical behavior in heavy electron materials, Proc. Natl. Acad. Sci. USA 111(23), 8398 (2014) https://doi.org/10.1073/pnas.1407561111
88
H. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys. 79(3), 1015 (2007) https://doi.org/10.1103/RevModPhys.79.1015