Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2021, Vol. 16 Issue (5): 53303   https://doi.org/10.1007/s11467-021-1074-9
  本期目录
Generic spiral spin liquids
Xu-Ping Yao1, Jian Qiao Liu1,2, Chun-Jiong Huang1, Xiaoqun Wang3,4, Gang Chen1,5()
1. Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Hong Kong, China
2. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
3. School of Physics and Astronomy, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
4. Key Laboratory of Artificial Structures and Quantum Control of MOE, Shenyang National Laboratory for Materials Science, Shenyang 110016, China
5. State Key Laboratory of Surface Physics and Department of Physics, Institute of Nanoelectronics and Quantum Computing, Fudan University, Shanghai 200433, China
 全文: PDF(1365 KB)  
Abstract

Spiral spin liquids are unique classical spin liquids that occur in many frustrated spin systems, but do not comprise a new phase of matter. Owing to extensive classical ground-state degeneracy, the spins in a spiral spin liquid thermally fluctuate cooperatively from a collection of spiral configurations at low temperatures. These spiral propagation wavevectors form a continuous manifold in reciprocal space, i.e., a spiral contour or a spiral surface, that strongly governs the low-temperature thermal fluctuations and magnetic physics. In this paper, the relevant spin models conveying the spiral spin liquid physics are systematically explored and the geometric origin of the spiral manifold is clarified in the model construction. The spiral spin liquids based on the dimension and the codimension of the spiral manifold are further clarified. For each class, the physical properties are studied both generally and for specific examples. The results are relevant to a wide range of frustrated magnets. A survey of materials is given and future experiments are suggested.

Key wordsspiral spin liquids    thermal order-by-disorder    Monte Carlo simulation
收稿日期: 2021-03-30      出版日期: 2021-06-11
Corresponding Author(s): Gang Chen   
 引用本文:   
. [J]. Frontiers of Physics, 2021, 16(5): 53303.
Xu-Ping Yao, Jian Qiao Liu, Chun-Jiong Huang, Xiaoqun Wang, Gang Chen. Generic spiral spin liquids. Front. Phys. , 2021, 16(5): 53303.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-021-1074-9
https://academic.hep.com.cn/fop/CN/Y2021/V16/I5/53303
1 L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010)
https://doi.org/10.1038/nature08917
2 L. Savary and L. Balents, Quantum spin liquids: A review, Rep. Prog. Phys. 80, 016502 (2016)
https://doi.org/10.1088/0034-4885/80/1/016502
3 P. A. Lee, From high temperature superconductivity to quantum spin liquid: Progress in strong correlation physics, Rep. Prog. Phys. 71, 012501 (2007)
https://doi.org/10.1088/0034-4885/71/1/012501
4 Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states, Rev. Mod. Phys. 89, 025003 (2017)
https://doi.org/10.1103/RevModPhys.89.025003
5 Y. Kohama, H. Ishikawa, A. Matsuo, K. Kindo, N. Shannon, and Z. Hiroi, Possible observation of quantum spinnematic phase in a frustrated magnet, Proc. Nat. Acad. Sci. 116, 10686 (2019)
https://doi.org/10.1073/pnas.1821969116
6 A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006)
https://doi.org/10.1016/j.aop.2005.10.005
7 D. Bergman, J. Alicea, E. Gull, S. Trebst, and L. Balents, Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets, Nature Phys. 3, 487 (2007)
https://doi.org/10.1038/nphys622
8 S. Lee and L. Balents, Theory of the ordered phase in A-site antiferromagnetic spinels, Phys. Rev. B 78, 144417 (2008)
https://doi.org/10.1103/PhysRevB.78.144417
9 L. Seabra, P. Sindzingre, T. Momoi, and N. Shannon, Novel phases in a square-lattice frustrated ferromagnet: 13-magnetization plateau, helicoidal spin liquid, and vortex crystal, Phys. Rev. B 93, 085132 (2016)
https://doi.org/10.1103/PhysRevB.93.085132
10 T. Shimokawa, T. Okubo, and H. Kawamura, Multiple-q states of the J1–J2 classical honeycomb-lattice Heisenberg antiferromagnet under a magnetic field, Phys. Rev. B 100, 224404 (2019)
https://doi.org/10.1103/PhysRevB.100.224404
11 S. Gao, O. Zaharko, V. Tsurkan, Y. Su, J. S. White, G. S. Tucker, B. Roessli, F. Bourdarot, R. Sibille, D. Chernyshov, T. Fennell, A. Loidl, and C. Rüegg, Spiral spin-liquid and the emergence of a vortex-like state in MnSc2S4, Nature Phys. 13, 157 (2016)
https://doi.org/10.1038/nphys3914
12 T. Shimokawa and H. Kawamura, Ripple state in the frustrated honeycomb-lattice antiferromagnet, Phys. Rev. Lett. 123, 057202 (2019)
https://doi.org/10.1103/PhysRevLett.123.057202
13 S. Gao, H. D. Rosales, F. A. Gomez Albarracn, V. Tsurkan, G. Kaur, T. Fennell, P. Steens, M. Boehm, P. Cermak, A. Schneidewind, et al., Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings, Nature 586, 37 (2020)
https://doi.org/10.1038/s41586-020-2716-8
14 X. Bai, J. A. M. Paddison, E. Kapit, S. M. Koohpayeh, 12 J.-J. Wen, S. E. Dutton, A. T. Savici, A. I. Kolesnikov, G. E. Granroth, C. L. Broholm, J. T. Chalker, and M. Mourigal, Magnetic excitations of the classical spin liquid MgCr2O4, Phys. Rev. Lett. 122, 097201 (2019)
https://doi.org/10.1103/PhysRevLett.122.097201
15 M. M. Bordelon, C. Liu, L. Posthuma, E. Kenney, M. J. Graf, N. P. Butch, A. Banerjee, S. Calder, L. Balents, and S. D. Wilson, Frustrated Heisenberg J1–J2 model within the stretched diamond lattice of LiYbO2, arXiv:2009.04043 (2020)
https://doi.org/10.1103/PhysRevB.103.014420
16 S. Biswas and K. Damle, Semiclassical theory for liquidlike behavior of the frustrated magnet Ca10Cr7O28, Phys. Rev. B 97, 115102 (2018)
https://doi.org/10.1103/PhysRevB.97.115102
17 R. Pohle, H. Yan, and N. Shannon, How many spin liquids are there in Ca10Cr7O28? arXiv: 1711.03778 (2017)
18 A. Mulder, R. Ganesh, L. Capriotti, and A. Paramekanti, Spiral order by disorder and lattice nematic order in a frustrated heisenberg antiferromagnet on the honeycomb lattice, Phys. Rev. B 81, 214419 (2010)
https://doi.org/10.1103/PhysRevB.81.214419
19 P. Balla, Y. Iqbal, and K. Penc, Ane lattice construction of spiral surfaces in frustrated Heisenberg models, Phys. Rev. B 100, 140402 (2019)
https://doi.org/10.1103/PhysRevB.100.140402
20 P. Balla, Y. Iqbal, and K. Penc, Degenerate manifolds, helimagnets, and multi-Q chiral phases in the classical Heisenberg antiferromagnet on the face-centered-cubic lattice, Phys. Rev. Res. 2, 043278 (2020)
https://doi.org/10.1103/PhysRevResearch.2.043278
21 N. Niggemann, M. Hering, and J. Reuther, Classical spiral spin liquids as a possible route to quantum spin liquids, J. Phys.: Condens. Matter 32, 024001 (2019)
https://doi.org/10.1088/1361-648X/ab4480
22 Z. Nussinov, Commensurate and incommensurate o(n) spin systems: Novel even-odd eects, a generalized merminwagner-coleman theorem, and ground states, arXiv:0105253 (2004)
23 J. Attig and S. Trebst, Classical spin spirals in frustrated magnets from free-fermion band topology, Phys. Rev. B 96, 085145 (2017)
https://doi.org/10.1103/PhysRevB.96.085145
24 J. Villain, R. Bidaux, J.-P. Carton, and R. Conte, Order as an eect of disorder, Journal de Physique 41, 1263 (1980)
https://doi.org/10.1051/jphys:0198000410110126300
25 C. L. Henley, Ordering due to disorder in a frustrated vector antiferromagnet, Phys. Rev. Lett. 62, 2056 (1989)
https://doi.org/10.1103/PhysRevLett.62.2056
26 J. N. Reimers and A. J. Berlinsky, Order by disorder in the classical Heisenberg Kagomé antiferromagnet, Phys. Rev. B 48, 9539 (1993)
https://doi.org/10.1103/PhysRevB.48.9539
27 K. Hukushima and K. Nemoto, Exchange Monte Carlo method and application to spin glass simulations, J. Phys. Soc. Japan 65, 1604 (1996)
https://doi.org/10.1143/JPSJ.65.1604
28 N. Tristan, J. Hemberger, A. Krimmel, H.-A. Krug von Nidda, V. Tsurkan, and A. Loidl, Geometric frustration in the cubic spinels MAl2O4 (M= Co, Fe, and Mn), Phys. Rev. B 72, 174404 (2005)
https://doi.org/10.1103/PhysRevB.72.174404
29 T. Suzuki, H. Nagai, M. Nohara, and H. Takagi, Melting of antiferromagnetic ordering in spinel oxide CoAl2O4, J. Phys.: Condens. Matter 19, 145265 (2007)
https://doi.org/10.1088/0953-8984/19/14/145265
30 V. Fritsch, J. Hemberger, N. Büttgen, E.-W. Scheidt, H.-A. Krug von Nidda, A. Loidl, and V. Tsurkan, Spin and orbital frustration in MnSc2S4 and FeSc2S4, Phys. Rev. Lett. 92, 116401 (2004)
https://doi.org/10.1103/PhysRevLett.92.116401
31 O. Zaharko, N. B. Christensen, A. Cervellino, V. Tsurkan, A. Maljuk, U. Stuhr, C. Niedermayer, F. Yokaichiya, D. N. Argyriou, M. Boehm, and A. Loidl, Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4, Phys. Rev. B 84, 094403 (2011)
https://doi.org/10.1103/PhysRevB.84.094403
32 Y. Iqbal, T. Müller, H. O. Jeschke, R. Thomale, and J. Reuther, Stability of the spiral spin liquid in MnSc2S4, Phys. Rev. B 98, 064427 (2018)
https://doi.org/10.1103/PhysRevB.98.064427
33 J. R. Chamorro, L. Ge, J. Flynn, M. A. Subramanian, M. Mourigal, and T. M. McQueen, Frustrated spin one on a diamond lattice in NiRh2O4, Phys. Rev. Mater. 2, 034404 (2018)
https://doi.org/10.1103/PhysRevMaterials.2.034404
34 L. Ge, J. Flynn, J. A. M. Paddison, M. B. Stone, S. Calder, M. A. Subramanian, A. P. Ramirez, and M. Mourigal, Spin order and dynamics in the diamond-lattice Heisenberg antiferromagnets CuRh2O4 and CoRh2O4, Phys. Rev. B 96, 064413 (2017)
https://doi.org/10.1103/PhysRevB.96.064413
35 G. Chen, Quantum paramagnet and frustrated quantum criticality in a spin-one diamond lattice antiferromagnet, Phys. Rev. B 96, 020412 (2017)
https://doi.org/10.1103/PhysRevB.96.020412
36 F. L. Buessen, M. Hering, J. Reuther, and S. Trebst, Quantum spin liquids in frustrated spin-1 diamond antiferromagnets, Phys. Rev. Lett. 120, 057201 (2018)
https://doi.org/10.1103/PhysRevLett.120.057201
37 F.-Y. Li and G. Chen, Spin-orbital entanglement in d8 Mott insulators: Possible excitonic magnetism in diamond lattice antiferromagnets, Phys. Rev. B 100, 045103 (2019)
https://doi.org/10.1103/PhysRevB.100.045103
38 S. Das, D. Nafday, T. Saha-Dasgupta, and A. Paramekanti, NiRh2O4: A spin–orbit entangled diamond-lattice paramagnet, Phys. Rev. B 100, 140408 (2019)
https://doi.org/10.1103/PhysRevB.100.140408
39 S. A. Nikolaev, I. V. Solovyev, A. N. Ignatenko, V. Y. Irkhin, and S. V. Streltsov, Realization of the anisotropic compass model on the diamond lattice of Cu2+ in CuAl2O4, Phys. Rev. B 98, 201106 (2018)
https://doi.org/10.1103/PhysRevB.98.201106
40 X.-P. Yao, C.-J. Huang, C. Liu, F.-Y. Li, and G. Chen, The eects of spin–orbit coupling in diamond lattice magnets: A study of heisenberg-compass model on a diamond lattice (2020) (in preparation)
41 J. G. Cheng, G. Li, L. Balicas, J. S. Zhou, J. B. Goodenough, C. Xu, and H. D. Zhou, High-pressure sequence of Ba3NiSb2O9 structural phases: New S= 1 quantum spin liquids based on Ni2+, Phys. Rev. Lett. 107, 197204 (2011)
https://doi.org/10.1103/PhysRevLett.107.197204
42 G. Chen, M. Hermele, and L. Radzihovsky, Frustrated quantum critical theory of putative spin-liquid phenomenology in 6H–B–Ba3NiSb2O9, Phys. Rev. Lett. 109, 016402 (2012)
https://doi.org/10.1103/PhysRevLett.109.016402
43 S. Okumura, H. Kawamura, T. Okubo, and Y. Motome, Novel spin-liquid states in the frustrated Heisenberg antiferromagnet on the honeycomb lattice, J. Phys. Soc. Japan 79, 114705 (2010)
https://doi.org/10.1143/JPSJ.79.114705
44 M. Matsuda, M. Azuma, M. Tokunaga, Y. Shimakawa, and N. Kumada, Disordered ground state and magnetic eld-induced long-range order in an S= 3/2 antiferromagnetic honeycomb lattice compound Bi3Mn4O12(NO3), Phys. Rev. Lett. 105, 187201 (2010)
https://doi.org/10.1103/PhysRevLett.105.187201
45 T. A. Sedrakyan, L. I. Glazman, and A. Kamenev, Spontaneous formation of a nonuniform chiral spin liquid in a moat-band lattice, Phys. Rev. Lett. 114, 037203 (2015)
https://doi.org/10.1103/PhysRevLett.114.037203
46 S. Jiang, L. Zou, and W. Ku, Non-Fermi-liquid scattering against an emergent Bose liquid: Manifestations in the kink and other exotic quasiparticle behavior in the normalstate cuprate superconductors, Phys. Rev. B 99, 104507(2019)
https://doi.org/10.1103/PhysRevB.99.104507
47 Z. Wang, C. Navarrete-Benlloch, and Z. Cai, Pattern formation and exotic order in driven-dissipative Bose–Hubbard systems, Phys. Rev. Lett. 125, 115301 (2020)
https://doi.org/10.1103/PhysRevLett.125.115301
48 J.-S. Bernier, M. J. Lawler, and Y. B. Kim, Quantum order by disorder in frustrated diamond lattice antiferromagnets, Phys. Rev. Lett. 101, 047201 (2008)
https://doi.org/10.1103/PhysRevLett.101.047201
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed