Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (5): 52502   https://doi.org/10.1007/s11467-022-1155-4
  本期目录
Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin–orbit coupling
Genwang Fan1, Xiao-Long Chen2,3(), Peng Zou1()
1. College of Physics, Qingdao University, Qingdao 266071, China
2. Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
3. Institute for Advanced Study, Tsinghua University, Beijing 100084, China
 全文: PDF(588 KB)  
Abstract

We theoretically investigate the Higgs oscillation in a one-dimensional Raman-type spin–orbit-coupled Fermi superfluid with the time-dependent Bogoliubov–de Gennes equations. By linearly ramping or abruptly changing the effective Zeeman field in both the Bardeen–Cooper–Schrieffer state and the topological superfluid state, we find the amplitude of the order parameter exhibits an oscillating behaviour over time with two different frequencies (i.e., two Higgs oscillations) in contrast to the single one in a conventional Fermi superfluid. The observed period of oscillations has a great agreement with the one calculated using the previous prediction [Volkov and Kogan, J. Exp. Theor. Phys. 38, 1018 (1974)], where the oscillating periods are now determined by the minimums of two quasi-particle spectrum in this system. We further verify the existence of two Higgs oscillations using a periodic ramp strategy with theoretically calculated driving frequency. Our predictions would be useful for further theoretical and experimental studies of these Higgs oscillations in spin–orbit-coupled systems.

Key wordsHiggs mode    spin–orbit coupled Fermi superfluid
收稿日期: 2021-11-27      出版日期: 2022-03-28
Corresponding Author(s): Xiao-Long Chen,Peng Zou   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(5): 52502.
Genwang Fan, Xiao-Long Chen, Peng Zou. Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin–orbit coupling. Front. Phys. , 2022, 17(5): 52502.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1155-4
https://academic.hep.com.cn/fop/CN/Y2022/V17/I5/52502
1 P. B. Littlewood and C. M. Varma, Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity, Phys. Rev. Lett. 47, 811 (1981)
https://doi.org/10.1103/PhysRevLett.47.811
2 P. B. Littlewood and C. M. Varma, Amplitude collective modes in superconductors and their coupling to chargedensity waves, Phys. Rev. B 26, 4883 (1982)
https://doi.org/10.1103/PhysRevB.26.4883
3 R. Sooryakumar and M. V. Klein, Raman scattering by superconducting-gap excitations and their coupling to charge-density waves, Phys. Rev. Lett. 45, 660 (1980)
https://doi.org/10.1103/PhysRevLett.45.660
4 R. Sooryakumar and M. V. Klein, Raman scattering from superconducting gap excitations in the presence of a magnetic field, Phys. Rev. B 23, 3213 (1981)
https://doi.org/10.1103/PhysRevB.23.3213
5 M. Matsumoto, B. Normand, T. M. Rice, and M. Sigrist, Field- and pressure-induced magnetic quantum phase transitions in TlCuCl3, Phys. Rev. B 69, 054423 (2004)
https://doi.org/10.1103/PhysRevB.69.054423
6 C. Rüegg, B. Normand, M. Matsumoto, A. Furrer, D. F. McMorrow, K. W. Krämer, H. U. Güdel, S. N. Gvasaliya, H. Mutka, and M. Boehm, Quantum magnets under ressure: Controlling elementary excitations in TlCuCl3, Phys. Rev. Lett. 100, 205701 (2008)
https://doi.org/10.1103/PhysRevLett.100.205701
7 R. G. Scott, F. Dalfovo, L. P. Pitaevskii, and S. Stringari, Rapid ramps across the BEC–BCS crossover: A route to measuring the superfluid gap, Phys. Rev. A 86, 053604 (2012)
https://doi.org/10.1103/PhysRevA.86.053604
8 E. Altman and A. Auerbach, Oscillating superfluidity of bosons in optical lattices, Phys. Rev. Lett. 89, 250404 (2002)
https://doi.org/10.1103/PhysRevLett.89.250404
9 L. Pollet and N. Prokof’ev, Higgs mode in a two dimensional superfluid, Phys. Rev. Lett. 109, 010401 (2012)
https://doi.org/10.1103/PhysRevLett.109.010401
10 U. Bissbort, S. Götze, Y. Li, J. Heinze, J. S. Krauser, M. Weinberg, C. Becker, K. Sengstock, and W. Hofstetter, Detecting the amplitude mode of strongly interacting lattice bosons by Bragg scattering, Phys. Rev. Lett. 106, 205303 (2011)
https://doi.org/10.1103/PhysRevLett.106.205303
11 M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauβ, C. Gross, E. Demler, S. Kuhr, and I. Bloch, The “Higgs” amplitude mode at the two-dimensional superfluid/Mott insulator transition, Nature 487, 454 (2012)
https://doi.org/10.1038/nature11255
12 D. Pekker and C. Varma, Amplitude/Higgs modes in condensed matter physics, Annual Review of Condensed Matter Physics 6, 269 (2015)
https://doi.org/10.1146/annurev-conmatphys-031214-014350
13 R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, and R. Shimano, Higgs amplitude mode in the BCS superconductors Nb1-xTixN induced by terahertz pulse excitation, Phys. Rev. Lett. 111, 057002 (2013)
https://doi.org/10.1103/PhysRevLett.111.057002
14 D. Sherman, U. S. Pracht, B. Gorshunov, S. Poran, J. Jesudasan, M. Chand, P. Raychaudhuri, M. Swanson, N. Trivedi, A. Auerbach, et al., The Higgs mode in disordered superconductors close to a quantum phase transition, Nature Phys. 11, 188 (2015)
https://doi.org/10.1038/nphys3227
15 E. A. Yuzbashyan and M. Dzero, Dynamical vanishing of the order parameter in a fermionic condensate, Phys. Rev. Lett. 96, 230404 (2006)
https://doi.org/10.1103/PhysRevLett.96.230404
16 S. Hannibal, P. Kettmann, M. D. Croitoru, A. Vagov, V. M. Axt, and T. Kuhn, Quench dynamics of an ultracold Fermi gas in the BCS regime: Spectral properties and confinement-induced breakdown of the Higgs mode, Phys. Rev. A 91, 043630 (2015)
https://doi.org/10.1103/PhysRevA.91.043630
17 E. Altman and A. Vishwanath, Dynamic projection on feshbach molecules: A probe of pairing and phase fluctuations, Phys. Rev. Lett. 95, 110404 (2005)
https://doi.org/10.1103/PhysRevLett.95.110404
18 A. Perali, P. Pieri, and G. C. Strinati, Extracting the condensate density from projection experiments with Fermi gases, Phys. Rev. Lett. 95, 010407 (2005)
https://doi.org/10.1103/PhysRevLett.95.010407
19 S. Matyjaśkiewicz, M. H. Szymańska, and K. Góral, Probing fermionic condensates by fast-sweep projection onto Feshbach molecules, Phys. Rev. Lett. 101, 150410 (2008)
https://doi.org/10.1103/PhysRevLett.101.150410
20 A. Behrle, T. Harrison, J. Kombe, K. Gao, M. Link, J.- S. Bernier, C. Kollath, and M. Köhl, Higgs mode in a strongly interacting fermionic superfluid, Nature Phys. 14, 781 (2018)
https://doi.org/10.1038/s41567-018-0128-6
21 B. Liu, H. Zhai, and S. Zhang, Evolution of the Higgs mode in a fermion superfluid with tunable interactions, Phys. Rev. A 93, 033641 (2016)
https://doi.org/10.1103/PhysRevA.93.033641
22 X. Han, B. Liu, and J. Hu, Observability of Higgs mode in a system without Lorentz invariance, Phys. Rev. A 94, 033608 (2016)
https://doi.org/10.1103/PhysRevA.94.033608
23 H. Kurkjian, S. N. Klimin, J. Tempere, and Y. Castin, Pair-breaking collective branch in BCS superconductors and superfluid Fermi gases, Phys. Rev. Lett. 122, 093403 (2019)
https://doi.org/10.1103/PhysRevLett.122.093403
24 A. Volkov and S. M. Kogan, Collisionless relaxation of the energy gap in superconductors, Soviet J. Exp. Theor. Phys. 38, 1018 (1974)
25 P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109, 095301 (2012)
https://doi.org/10.1103/PhysRevLett.109.095301
26 L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett. 109, 095302 (2012)
https://doi.org/10.1103/PhysRevLett.109.095302
27 P. Wang, W. Yi, and G. Xianlong, Topological phase transition in the quench dynamics of a one-dimensional fermi gas with spin–orbit coupling, New J. Phys. 17, 013029 (2015)
https://doi.org/10.1088/1367-2630/17/1/013029
28 Y. Dong, L. Dong, M. Gong, and H. Pu, Dynamical phases in quenched spin–orbit-coupled degenerate Fermi gas, Nature Commun. 6, 6103 (2015)
https://doi.org/10.1038/ncomms7103
29 L. Kong, G. Fan, S.-G. Peng, X.-L. Chen, H. Zhao, and P. Zou, Dynamical generation of solitons in one dimensional Fermi superfluids with and without spin–orbit coupling, Phys. Rev. A 103, 063318 (2021)
https://doi.org/10.1103/PhysRevA.103.063318
30 R. Wei and E. J. Mueller, Majorana fermions in onedimensional spin–orbit-coupled Fermi gases, Phys. Rev. A 86, 063604 (2012)
https://doi.org/10.1103/PhysRevA.86.063604
31 M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, One dimensional bosons: From condensed matter systems to ultracold gases, Rev. Mod. Phys. 83, 1405 (2011)
https://doi.org/10.1103/RevModPhys.83.1405
32 X.-W. Guan, M. T. Batchelor, and C. Lee, Fermi gases in one dimension: From Bethe ansatz to experiments, Rev. Mod. Phys. 85, 1633 (2013)
https://doi.org/10.1103/RevModPhys.85.1633
33 M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81, 938 (1998)
https://doi.org/10.1103/PhysRevLett.81.938
34 E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G. Pupillo, and H.-C. Nägerl, Nägerl, Realization of an excited, strongly correlated quantum gas phase, Science 325, 1224 (2009)
https://doi.org/10.1126/science.1175850
35 E. Haller, M. J. Mark, R. Hart, J. G. Danzl, L. Reichsöllner, V. Melezhik, P. Schmelcher, and H.-C. Nägerl, Confinement-induced resonances in low dimensional quantum systems, Phys. Rev. Lett. 104, 153203 (2010)
https://doi.org/10.1103/PhysRevLett.104.153203
36 S.-G. Peng, S. S. Bohloul, X.-J. Liu, H. Hu, and P. D. Drummond, Confinement-induced resonance in quasionedimensional systems under transversely anisotropic confinement, Phys. Rev. A 82, 063633 (2010)
https://doi.org/10.1103/PhysRevA.82.063633
37 S.-G. Peng, H. Hu, X.-J. Liu, and P. D. Drummond, Confinement-induced resonances in anharmonic waveguides, Phys. Rev. A 84, 043619 (2011)
https://doi.org/10.1103/PhysRevA.84.043619
38 S.-G. Peng, S. Tan, and K. Jiang, Manipulation of p-wave scattering of cold atoms in low dimensions using the magnetic field vector, Phys. Rev. Lett. 112, 250401 (2014)
https://doi.org/10.1103/physRevLett.112.250401
39 Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471, 83 (2011)
https://doi.org/10.1038/nature09887
40 J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, and J.-W. Pan, Collective dipole oscillations of a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. Lett. 109, 115301 (2012)
https://doi.org/10.1103/PhysRevLett.109.115301
41 R. A. Williams, M. C. Beeler, L. J. LeBlanc, K. JiménezGarcía, and I. B. Spielman, Raman-induced interactions in a single-component Fermi gas near an s-wave Feshbach resonance, Phys. Rev. Lett. 111, 095301 (2013)
https://doi.org/10.1103/PhysRevLett.111.095301
42 C. Qu, C. Hamner, M. Gong, C. Zhang, and P. Engels, Observation of Zitterbewegung in a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. A 88, 021604 (2013)
https://doi.org/10.1103/PhysRevA.88.021604
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed