Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2022, Vol. 17 Issue (5): 53500   https://doi.org/10.1007/s11467-022-1167-0
  本期目录
Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations
Changjie Zhou1, Huili Zhu1(), Weifeng Yang2(), Qiubao Lin1, Tongchang Zheng1, Lan Yang1, Shuqiong Lan1
1. Xiamen Key Laboratory of Ultra-Wide Bandgap Semiconductor Materials and Devices, Department of Physics, School of Science, Jimei University, Xiamen 361021, China
2. Department of Microelectronics and Integrated Circuits, Xiamen University, Xiamen 361005, China
 全文: PDF(5886 KB)   HTML
Abstract

Two-dimensional (2D) WS2 films were deposited on SiO2 wafers, and the related interfacial properties were investigated by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principles calculations. Using the direct (indirect) method, the valence band offset (VBO) at monolayer WS2/SiO2 interface was found to be 3.97 eV (3.86 eV), and the conduction band offset (CBO) was 2.70 eV (2.81 eV). Furthermore, the VBO (CBO) at bulk WS2/SiO2 interface is found to be about 0.48 eV (0.33 eV) larger due to the interlayer orbital coupling and splitting of valence and conduction band edges. Therefore, the WS2/SiO2 heterostructure has a Type I energy-band alignment. The band offsets obtained experimentally and theoretically are consistent except the narrower theoretical bandgap of SiO2. The theoretical calculations further reveal a binding energy of 75 meV per S atom and the totally separated partial density of states, indicating a weak interaction and negligible Fermi level pinning effect between WS2 monolayer and SiO2 surface. Our combined experimental and theoretical results provide proof of the sufficient VBOs and CBOs and weak interaction in 2D WS2/SiO2 heterostructures.

Key wordsband offsets    WS2    SiO2    X-ray photoelectron spectroscopy    first-principles calculations
收稿日期: 2022-01-07      出版日期: 2022-06-27
Corresponding Author(s): Huili Zhu,Weifeng Yang   
 引用本文:   
. [J]. Frontiers of Physics, 2022, 17(5): 53500.
Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations. Front. Phys. , 2022, 17(5): 53500.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-022-1167-0
https://academic.hep.com.cn/fop/CN/Y2022/V17/I5/53500
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 F. Mak K. , Lee C. , Hone J. , Shan J. , F. Heinz T. . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105( 13): 136805
https://doi.org/10.1103/PhysRevLett.105.136805
2 Eda G. , Yamaguchi H. , Voiry D. , Fujita T. , W. Chen M. , Chhowalla M. . Photoluminescence from chemically exfoliated MoS2. Nano Lett., 2011, 11( 12): 5111
https://doi.org/10.1021/nl201874w
3 N. Coleman J. , Lotya M. , O’Neill A. , D. Bergin S. , J. King P. , Khan U. , Young K. , Gaucher A. , De S. , J. Smith R. , V. Shvets I. , K. Arora S. , Stanton G. , Y. Kim H. , Lee K. , T. Kim G. , S. Duesberg G. , Hallam T. , J. Boland J. , J. Wang J. , F. Donegan J. , C. Grunlan J. , Moriarty G. , Shmeliov A. , J. Nicholls R. , M. Perkins J. , M. Grieveson E. , Theuwissen K. , W. McComb D. , D. Nellist P. , Nicolosi V. . Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331( 6017): 568
https://doi.org/10.1126/science.1194975
4 J. Zhan Y. , Liu Z. , Najmaei S. , M. Ajayan P. , Lou J. . Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 2012, 8( 7): 966
https://doi.org/10.1002/smll.201102654
5 H. Lee Y. , Q. Zhang X. , J. Zhang W. , T. Chang M. , T. Lin C. , D. Chang K. , C. Yu Y. , T. W. Wang J. , S. Chang C. , J. Li L. , W. Lin T. . Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater., 2012, 24( 17): 2320
https://doi.org/10.1002/adma.201104798
6 Y. Liu P. , Luo T. , Xing J. , Xu H. , Y. Hao H. , Liu H. , J. Dong J. . Large-area WS2 film with big single domains grown by chemical vapor deposition. Nanoscale Res. Lett., 2017, 12( 1): 558
https://doi.org/10.1186/s11671-017-2329-9
7 L. Elías A. , Perea-Lopez N. , Castro-Beltran A. , Berkdemir A. , T. Lv R. , M. Feng S. , D. Long A. , Hayashi T. , A. Kim Y. , Endo M. , R. Gutierrez H. , R. Pradhan N. , Balicas L. , E. Mallouk T. , Lopez-Urias F. , Terrones H. , Terrones M. . Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano, 2013, 7( 6): 5235
https://doi.org/10.1021/nn400971k
8 L. Zhu H. , J. Zhou C. , S. Tang B. , F. Yang W. , W. Chai J. , L. Tay W. , Gong H. , S. Pan J. , D. Zou W. , J. Wang S. , Z. Chi D. . Band alignment of 2D WS2/HfO2 interfaces from X-ray photoelectron spectroscopy and first-principles calculations. Appl. Phys. Lett., 2018, 112( 17): 171604
https://doi.org/10.1063/1.5022719
9 X. Ye M. , Y. Zhang D. , K. Yap Y. . Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics (Basel), 2017, 6( 2): 43
https://doi.org/10.3390/electronics6020043
10 X. Cong C. , Z. Shang J. , L. Wang Y. , Yu T. . Optical properties of 2D semiconductor WS2. Adv. Opt. Mater., 2018, 6( 1): 1700767
https://doi.org/10.1002/adom.201700767
11 J. Schuck P. , Bao W. , J. Borys N. . A polarizing situation: Taking an in-plane perspective for next-generation near-field studies. Front. Phys., 2016, 11( 2): 117804
https://doi.org/10.1007/s11467-015-0526-5
12 C. Zhou Z. , Y. Yang F. , Wang S. , Wang L. , F. Wang X. , Wang C. , Xie Y. , Liu Q. . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17( 2): 23204
https://doi.org/10.1007/s11467-021-1114-5
13 L. Zhu H. , H. Yang W. , P. Wu Y. , Lin W. , Y. Kang J. , J. Zhou C. . Au and Ti induced charge redistributions on monolayer WS2. Chin. Phys. B, 2015, 24( 7): 077301
https://doi.org/10.1088/1674-1056/24/7/077301
14 LaMountain T. , J. Lenferink E. , J. Chen Y. , K. Stanev T. , P. Stern N. . Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys., 2018, 13( 4): 138114
https://doi.org/10.1007/s11467-018-0795-x
15 Luo G. , Z. Zhang Z. , O. Li H. , X. Song X. , W. Deng G. , Cao G. , Xiao M. , P. Guo G. . Quantum dot behavior in transition metal dichalcogenides nanostructures. Front. Phys., 2017, 12( 4): 128502
https://doi.org/10.1007/s11467-017-0652-3
16 M. Hill H. , F. Rigosi A. , T. Rim K. , W. Flynn G. , F. Heinz T. . Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett., 2016, 16( 8): 4831
https://doi.org/10.1021/acs.nanolett.6b01007
17 Z. Guo Y. , Robertson J. . Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures. Appl. Phys. Lett., 2016, 108( 23): 233104
https://doi.org/10.1063/1.4953169
18 Jadczak J. , Kutrowska-Girzycka J. , Kapuscinski P. , S. Huang Y. , Wojs A. , Bryja L. . Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology, 2017, 28( 39): 395702
https://doi.org/10.1088/1361-6528/aa87d0
19 K. Nayak P. , C. Lin F. , H. Yeh C. , S. Huang J. , W. Chiu P. . Robust room temperature valley polarization in monolayer and bilayer WS2. Nanoscale, 2016, 8( 11): 6035
https://doi.org/10.1039/C5NR08395H
20 Ubrig N. , Jo S. , Philippi M. , Costanzo D. , Berger H. , B. Kuzmenko A. , F. Morpurgo A. . Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett., 2017, 17( 9): 5719
https://doi.org/10.1021/acs.nanolett.7b02666
21 Van der Donck M. , Zarenia M. , M. Peeters F. . Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field. Phys. Rev. B, 2018, 97( 8): 081109
https://doi.org/10.1103/PhysRevB.97.081109
22 W. Iqbal M. , Z. Iqbal M. , F. Khan M. , A. Kamran M. , Majid A. , Alharbi T. , Eom J. . Tailoring the electrical and photo-electrical properties of a WS2 field effect transistor by selective n-type chemical doping. RSC Advances, 2016, 6( 29): 24675
https://doi.org/10.1039/C6RA02390H
23 J. Huo N. , X. Yang S. , M. Wei Z. , S. Li S. , B. Xia J. , B. Li J. . Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep., 2014, 4( 1): 5209
https://doi.org/10.1038/srep05209
24 Akinwande D. , Petrone N. , Hone J. . Two-dimensional flexible nanoelectronics. Nat. Commun., 2014, 5( 1): 5678
https://doi.org/10.1038/ncomms6678
25 Wang Y. , Kong D. , Huang S. , Shi Y. , Ding M. , Von Lim Y. , Xu T. , Chen F. , Li X. , Y. Yang H. . 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem., 2018, 6( 23): 10813
https://doi.org/10.1039/C8TA02773K
26 Y. Lan C. , Y. Zhou Z. , F. Zhou Z. , Li C. , Shu L. , F. Shen L. , P. Li D. , T. Dong R. , P. Yip S. , Ho J. . Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res., 2018, 11( 6): 3371
https://doi.org/10.1007/s12274-017-1941-4
27 Ouyang C. , X. Chen Y. , Y. Qin Z. , W. Zeng D. , Zhang J. , Wang H. , S. Xie C. . Two-dimensional WS2-based nanosheets modified by Pt quantum dots for enhanced room-temperature NH3 sensing properties. Appl. Surf. Sci., 2018, 455 : 45
https://doi.org/10.1016/j.apsusc.2018.05.148
28 A. Asres G. , J. Baldoví J. , Dombovari A. , Järvinen T. , S. Lorite G. , Mohl M. , Shchukarev A. , Pérez Paz A. , Xian L. , P. Mikkola J. , L. Spetz A. , Jantunen H. , Rubio Á. , Kordás K. . Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res., 2018, 11( 8): 4215
https://doi.org/10.1007/s12274-018-2009-9
29 H. Xu Q. , T. Lu Y. , Y. Zhao S. , Hu N. , W. Jiang Y. , Li H. , Wang Y. , Q. Gao H. , Li Y. , Yuan M. , Chu L. , H. Li J. , N. Xie Y. . A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction. Nano Energy, 2021, 89 : 106382
https://doi.org/10.1016/j.nanoen.2021.106382
30 H. Xu Q. , S. Fang Y. , Q. S. Jing B. , Hu N. , Lin K. , F. Pan Y. , Xu L. , Q. Gao H. , Yuan M. , Chu L. , W. Ma Y. , N. Xie Y. , Chen J. , H. Wang L. . A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosens. Bioelectron., 2021, 187 : 113329
https://doi.org/10.1016/j.bios.2021.113329
31 Z. Yan Z. , H. Jiang Z. , P. Lu J. , H. Ni Z. . Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13( 4): 138115
https://doi.org/10.1007/s11467-018-0785-z
32 J. Yin W. , L. Zeng X. , Wen B. , X. Ge Q. , Xu Y. , Teobaldi G. , M. Liu L. . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16( 3): 33501
https://doi.org/10.1007/s11467-020-1021-1
33 Wang H. , L. Ren D. , Lu C. , B. Yan X. . Investigation of multilayer WS2 flakes as charge trapping stack layers in non-volatile memories. Appl. Phys. Lett., 2018, 112( 23): 231903
https://doi.org/10.1063/1.5024799
34 Zheliuk O. , M. Lu J. , Yang J. , T. Ye J. . Monolayer superconductivity in WS2. Phys. Status Solidi Rapid Res. Lett., 2017, 11( 9): 1700245
https://doi.org/10.1002/pssr.201700245
35 Ulstrup S. , J. Koch R. , Schwarz D. , M. McCreary K. , T. Jonker B. , Singh S. , Bostwick A. , Rotenberg E. , Jozwiak C. , Katoch J. . Imaging microscopic electronic contrasts at the interface of single-layer WS2 with oxide and boron nitride substrates. Appl. Phys. Lett., 2019, 114( 15): 151601
https://doi.org/10.1063/1.5088968
36 F. Yang W. , Kawai H. , Bosman M. , S. Tang B. , W. Chai J. , L. Tay W. , Yang J. , L. Seng H. , L. Zhu H. , Gong H. , F. Liu H. , E. J. Goh K. , J. Wang S. , Z. Chi D. . Interlayer interactions in 2D WS2/MoS2 heterostructures monolithically grown by in situ physical vapor deposition. Nanoscale, 2018, 10( 48): 22927
https://doi.org/10.1039/C8NR07498D
37 S. Tang B. , G. Yu Z. , Huang L. , W. Chai J. , L. Wong S. , Deng J. , F. Yang W. , Gong H. , J. Wang S. , W. Ang K. , W. Zhang Y. , Z. Chi D. . Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano, 2018, 12( 3): 2506
https://doi.org/10.1021/acsnano.7b08261
38 R. Gutiérrez H. , Perea-Lopez N. , L. Elias A. , Berkdemir A. , Wang B. , Lv R. , Lopez-Urias F. , H. Crespi V. , Terrones H. , Terrones M. . Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett., 2013, 13( 8): 3447
https://doi.org/10.1021/nl3026357
39 Yang L. , B. Zhu X. , J. Xiong S. , L. Wu X. , Shan Y. , K. Chu P. . Synergistic WO2·2H2O nanoplates/WS2 hybrid catalysts for high-efficiency hydrogen evolution. ACS Appl. Mater. Interfaces, 2016, 8( 22): 13966
https://doi.org/10.1021/acsami.6b04045
40 Bhandavat R. , David L. , Singh G. . Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett., 2012, 3( 11): 1523
https://doi.org/10.1021/jz300480w
41 Cadot S. , Renault O. , Rouchon D. , Mariolle D. , Nolot E. , Thieuleux C. , Veyre L. , Okuno H. , Martin F. , A. Quadrelli E. . Low-temperature and scalable CVD route to WS2 monolayers on SiO2/Si substrates. J. Vac. Sci. Technol. A, 2017, 35( 6): 061502
https://doi.org/10.1116/1.4996550
42 A. Kraut E. , W. Grant R. , R. Waldrop J. , P. Kowalczyk S. . Precise determination of the valence-band edge in X-ray photoemission spectra-application to measurement of semi-conductor interface potentials. Phys. Rev. Lett., 1980, 44( 24): 1620
https://doi.org/10.1103/PhysRevLett.44.1620
43 G. Tao J. , W. Chai J. , Zhang Z. , S. Pan J. , J. Wang S. . The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces. Appl. Phys. Lett., 2014, 104( 23): 232110
https://doi.org/10.1063/1.4883865
44 Santoni A. , Biccari F. , Malerba C. , Valentini M. , Chierchia R. , Mittiga A. . Valence band offset at the CdS/Cu2ZnSnS4 interface probed by X-ray photoelectron spectroscopy. J. Phys. D Appl. Phys., 2013, 46( 17): 175101
https://doi.org/10.1088/0022-3727/46/17/175101
45 J. Grunthaner F. , F. Lewis B. , Zamini N. , Maserjian J. , Madhukar A. . XPS studies of structure-induced radiation effects at the Si/SiO2 interface. IEEE Trans. Nucl. Sci., 1980, 27( 6): 1640
https://doi.org/10.1109/TNS.1980.4331082
46 Zhang J. , H. Wei S. , L. Wang X. , J. Xiang J. , W. Wang W. . Experimental estimation of charge neutrality level of SiO2. Appl. Surf. Sci., 2017, 422 : 690
https://doi.org/10.1016/j.apsusc.2017.06.078
47 L. Zhu H. , J. Zhou C. , J. Huang X. , L. Wang X. , Z. Xu H. , Lin Y. , H. Yang W. , P. Wu Y. , Lin W. , Guo F. . Evolution of band structures in MoS2-based homo- and heterobilayers. J. Phys. D Appl. Phys., 2016, 49( 6): 065304
https://doi.org/10.1088/0022-3727/49/6/065304
48 K. Lin Y. , S. Chen R. , C. Chou T. , H. Lee Y. , F. Chen Y. , H. Chen K. , C. Chen L. . Thickness-dependent binding energy shift in few-layer MoS2 grown by chemical vapor deposition. ACS Appl. Mater. Interfaces, 2016, 8( 34): 22637
https://doi.org/10.1021/acsami.6b06615
49 Kresse G. , Hafner J. . Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B, 1993, 47( 1): 558
https://doi.org/10.1103/PhysRevB.47.558
50 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77( 18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
51 Grimme S. , Antony J. , Ehrlich S. , Krieg H. . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132( 15): 154104
https://doi.org/10.1063/1.3382344
52 Heyd J. , E. Scuseria G. , Ernzerhof M. . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118( 18): 8207
https://doi.org/10.1063/1.1564060
53 Bengtsson L. . Dipole correction for surface supercell calculations. Phys. Rev. B, 1999, 59( 19): 12301
https://doi.org/10.1103/PhysRevB.59.12301
54 I. Malyi O. , V. Kulish V. , Persson C. . In search of new reconstructions of (001) alpha-quartz surface: A first principles study. RSC Advances, 2014, 4( 98): 55599
https://doi.org/10.1039/C4RA10726H
55 L. Scopel W. , J. R. da Silva A. , Fazzio A. . Amorphous HfO2 and Hf1−xSixO via a melt-and-quench scheme using ab initio molecular dynamics. Phys. Rev. B, 2008, 77( 17): 172101
https://doi.org/10.1103/PhysRevB.77.172101
56 L. Scopel W. , H. Miwa R. , M. Schmidt T. , Venezuela P. . MoS2 on an amorphous HfO2 surface: An ab initio investigation. J. Appl. Phys., 2015, 117( 19): 194303
https://doi.org/10.1063/1.4921058
57 C. Nguyen T. , Otani M. , Okada S. . Semiconducting electronic property of graphene adsorbed on (0001) surfaces of SiO2. Phys. Rev. Lett., 2011, 106( 10): 106801
https://doi.org/10.1103/PhysRevLett.106.106801
58 H. Feng S. , L. Yang R. , Y. Jia Z. , Y. Xiang J. , S. Wen F. , P. Mu C. , M. Nie A. , S. Zhao Z. , Xu B. , G. Tao C. , J. Tian Y. , Y. Liu Z. . Strain release induced novel fluorescence variation in CVD-grown monolayer WS2 crystals. ACS Appl. Mater. Interfaces, 2017, 9( 39): 34071
https://doi.org/10.1021/acsami.7b09744
59 Keyshar K. , Berg M. , Zhang X. , Vajtai R. , Gupta G. , K. Chan C. , E. Beechem T. , M. Ajayan P. , D. Mohite A. , Ohta T. . Experimental determination of the ionization energies of MoSe2, WS2, and MoS2 on SiO2 using photoemission electron microscopy. ACS Nano, 2017, 11( 8): 8223
https://doi.org/10.1021/acsnano.7b03242
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed