Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2024, Vol. 19 Issue (2): 21201   https://doi.org/10.1007/s11467-023-1336-9
  本期目录
Local quantum Fisher information and quantum correlation in the mixed-spin Heisenberg XXZ chain
Peng-Fei Wei1, Qi Luo1, Huang-Qiu-Chen Wang1, Shao-Jie Xiong2, Bo Liu3(), Zhe Sun1,4()
1. School of Physics, Hangzhou Normal University, Hangzhou 310036, China
2. Zhejiang Institute of Modern Physics and School of Physics, Zhejiang University, Hangzhou 310027, China
3. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
4. Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
 全文: PDF(6821 KB)   HTML
Abstract

We study the local quantum Fisher information (LQFI) in the mixed-spin Heisenberg XXZ chain. Both the maximal and minimal LQFI are studied and the former is essential to determine the accuracy of the quantum parameter estimation, the latter can be well used to characterize the discord-type quantum correlations. We investigate the effects of the temperature and the anisotropy parameter on the maximal LQFI and thus on the accuracy of the parameter estimation. Then we make use of the minimal LQFI to study the discord-type correlations of different site pairs. Different dimensions of the subsystems cause different values of the minimal LQFI which reflects the asymmetry of the discord-type correlation. In addition, the site pairs at different positions of the spin chains have different minimal LQFI, which reveals the influence of the surrounding spins on the bipartite quantum correlation. Our results show that the LQFI obtained through a simple calculation process provides a convenient way to investigate the discord-type correlation in high-dimensional systems.

Key wordslocal quantum Fisher information    quantum correlation    mixed-spin Heisenberg XXZ chain
收稿日期: 2023-04-06      出版日期: 2023-09-27
Corresponding Author(s): Bo Liu,Zhe Sun   
 引用本文:   
. [J]. Frontiers of Physics, 2024, 19(2): 21201.
Peng-Fei Wei, Qi Luo, Huang-Qiu-Chen Wang, Shao-Jie Xiong, Bo Liu, Zhe Sun. Local quantum Fisher information and quantum correlation in the mixed-spin Heisenberg XXZ chain. Front. Phys. , 2024, 19(2): 21201.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-023-1336-9
https://academic.hep.com.cn/fop/CN/Y2024/V19/I2/21201
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
  
  
  
  
1 Giovannetti V., Lloyd S., Maccone L.. Quantum-enhanced measurements: Beating the standard quantum limit. Science, 2004, 306(5700): 1330
https://doi.org/10.1126/science.1104149
2 Braun D., Adesso G., Benatti F., Floreanini R., Marzolino U., W. Mitchell M., Pirandola S.. Quantum-enhanced measurements without entanglement. Rev. Mod. Phys., 2018, 90(3): 035006
https://doi.org/10.1103/RevModPhys.90.035006
3 Pezzè L., Smerzi A., K. Oberthaler M., Schmied R., Treutlein P.. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
https://doi.org/10.1103/RevModPhys.90.035005
4 P. Dowling J., P. Seshadreesan K.. Quantum optical technologies for metrology, sensing, and imaging. J. Lightwave Technol., 2015, 33(12): 2359
https://doi.org/10.1109/JLT.2014.2386795
5 Liu J., Zhang M., Chen H., Wang L., Yuan H.. Optimal scheme for quantum metrology. Adv. Quantum Technol., 2022, 5(1): 2100080
https://doi.org/10.1002/qute.202100080
6 Demkowicz-Dobrzański R., Maccone L.. Using entanglement against noise in quantum metrology. Phys. Rev. Lett., 2014, 113(25): 250801
https://doi.org/10.1103/PhysRevLett.113.250801
7 Pezzé L., Smerzi A.. Ultrasensitive two-mode interferometry with single-mode number squeezing. Phys. Rev. Lett., 2013, 110(16): 163604
https://doi.org/10.1103/PhysRevLett.110.163604
8 Schnabel R., Mavalvala N., E. McClelland D., K. Lam P.. Quantum metrology for gravitational wave astronomy. Nat. Commun., 2010, 1(1): 121
https://doi.org/10.1038/ncomms1122
9 D. Huver S., F. Wildfeuer C., P. Dowling J.. Entangled Fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A, 2008, 78(6): 063828
https://doi.org/10.1103/PhysRevA.78.063828
10 Ahmadi M., E. Bruschi D., Sab’ın C., Adesso G., Fuentes I.. Relativistic quantum metrology: Exploiting relativity to improve quantum measurement technologies. Sci. Rep., 2014, 4(1): 4996
https://doi.org/10.1038/srep04996
11 Sun Z., Ma J., M. Lu X., G. Wang X.. Fisher information in a quantum-critical environment. Phys. Rev. A, 2010, 82(2): 022306
https://doi.org/10.1103/PhysRevA.82.022306
12 Zhang M., M. Yu H., D. Yuan H., G. Wang X., Demkowicz-Dobrzański R., Liu J.. QuanEstimation: An open-source toolkit for quantum parameter estimation. Phys. Rev. Res., 2022, 4(4): 043057
https://doi.org/10.1103/PhysRevResearch.4.043057
13 J. Gu S.. Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B, 2010, 24(23): 4371
https://doi.org/10.1142/S0217979210056335
14 L. Wang T., N. Wu L., Yang W., R. Jin G., Lambert N., Nori F.. Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys., 2014, 16(6): 063039
https://doi.org/10.1088/1367-2630/16/6/063039
15 Marzolino U., Prosen T.. Fisher information approach to non-equilibrium phase transitions in a quantum XXZ spin chain with boundary noise. Phys. Rev. B, 2017, 96(10): 104402
https://doi.org/10.1103/PhysRevB.96.104402
16 Hyllus P., Laskowski W., Krischek R., Schwemmer C., Wieczorek W., Weinfurter H., Pezzé L., Smerzi A.. Fisher information and multiparticle entanglement. Phys. Rev. A, 2012, 85(2): 022321
https://doi.org/10.1103/PhysRevA.85.022321
17 Tóth G.. Multipartite entanglement and high-precision metrology. Phys. Rev. A, 2012, 85(2): 022322
https://doi.org/10.1103/PhysRevA.85.022322
18 M. Lu X., Wang X., P. Sun C.. Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A, 2010, 82(4): 042103
https://doi.org/10.1103/PhysRevA.82.042103
19 Girolami D., M. Souza A., Giovannetti V., Tufarelli T., G. Filgueiras J., S. Sarthour R., O. Soares-Pinto D., S. Oliveira I., Adesso G.. Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett., 2014, 112(21): 210401
https://doi.org/10.1103/PhysRevLett.112.210401
20 S. Dhar H., N. Bera M., Adesso G.. Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A, 2015, 91(3): 032115
https://doi.org/10.1103/PhysRevA.91.032115
21 P. Chen L., N. Guo Y.. Dynamics of local quantum uncertainty and local quantum fisher information for a two-qubit system driven by classical phase noisy laser. J. Mod. Opt., 2021, 68(4): 217
https://doi.org/10.1080/09500340.2021.1887949
22 B. A. Mohamed A., Eleuch H.. Dynamics of two magnons coupled to an open microwave cavity: Local quantum Fisher- and local skew-information coherence. Eur. Phys. J. Plus, 2022, 137(7): 853
https://doi.org/10.1140/epjp/s13360-022-03042-6
23 Slaoui A.Bakmou L.Daoud M.Ahl Laamara R., A comparative study of local quantum Fisher information and local quantum uncertainty in Heisenberg XY model, Phys. Lett. A 383(19), 2241 (2019)
24 Habiballah N., Khedif Y., Daoud M.. Local quantum uncertainty in XYZ Heisenberg spin models with Dzyaloshinski‒Moriya interaction. Eur. Phys. J. D, 2018, 72(9): 154
https://doi.org/10.1140/epjd/e2018-90255-y
25 Ozaydin F., A. Altintas A.. Parameter estimation with Dzyaloshinski‒Moriya interaction under external magnetic fields. Opt. Quantum Electron., 2020, 52(2): 70
https://doi.org/10.1007/s11082-019-2185-1
26 Ozaydin F., A. Altintas A.. Quantum metrology: Surpassing the shot-noise limit with Dzyaloshinskii‒Moriya interaction. Sci. Rep., 2015, 5(1): 16360
https://doi.org/10.1038/srep16360
27 Haseli S.. Local quantum Fisher information and local quantum uncertainty in two-qubit Heisenberg XYZ chain with Dzyaloshinskii‒Moriya interactions. Laser Phys., 2020, 30(10): 105203
https://doi.org/10.1088/1555-6611/abac65
28 V. Fedorova A., A. Yurischev M.. Behavior of quantum discord, local quantum uncertainty, and local quantum Fisher information in two-spin-1/2 Heisenberg chain with DM and KSEA interactions. Quantum Inform. Process., 2022, 21(3): 92
https://doi.org/10.1007/s11128-022-03427-7
29 Liu J., X. Jing X., Zhong W., G. Wang X.. Quantum Fisher information for density matrices with arbitrary ranks. Commum. Theor. Phys., 2014, 61(1): 45
https://doi.org/10.1088/0253-6102/61/1/08
30 A. Nielsen M.L. Chuang I., Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
31 Ollivier H., H. Zurek W.. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett., 2001, 88(1): 017901
https://doi.org/10.1103/PhysRevLett.88.017901
32 Groisman B., Popescu S., Winter A.. Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A, 2005, 72(3): 032317
https://doi.org/10.1103/PhysRevA.72.032317
33 Dakić B., Vedral V., Brukner Č.. Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett., 2010, 105(19): 190502
https://doi.org/10.1103/PhysRevLett.105.190502
34 M. Lu X.J. Xi Z.Sun Z.G. Wang X., Geometric measure of quantum discord under decoherence, Quantum Inf. Comput. 10(11–12), 0994 (2010)
35 Werlang T., Souza S., F. Fanchini F., J. Villas Boas C.. Robustness of quantum discord to sudden death. Phys. Rev. A, 2009, 80(2): 024103
https://doi.org/10.1103/PhysRevA.80.024103
36 Datta A., Shaji A., M. Caves C.. Quantum discord and the power of one qubit. Phys. Rev. Lett., 2008, 100(5): 050502
https://doi.org/10.1103/PhysRevLett.100.050502
37 L. Luo S., S. Fu S.. Geometric measure of quantum discord. Phys. Rev. A, 2010, 82(3): 034302
https://doi.org/10.1103/PhysRevA.82.034302
38 Henderson L., Vedral V.. Classical, quantum and total correlations. J. Phys. Math. Gen., 2001, 34(35): 6899
https://doi.org/10.1088/0305-4470/34/35/315
39 X. Chen Y., Yin Z.. Thermal quantum discord in anisotropic Heisenberg XXZ model with Dzyaloshinskii‒Moriya interaction. Commum. Theor. Phys., 2010, 54(1): 60
https://doi.org/10.1088/0253-6102/54/1/12
40 Chen Q., Zhang C., Yu S., X. Yi X., H. Oh C.. Quantum discord of two-qubit X states. Phys. Rev. A, 2011, 84(4): 042313
https://doi.org/10.1103/PhysRevA.84.042313
41 Ali M., R. P. Rau A., Alber G.. Quantum discord for two-qubit X states. Phys. Rev. A, 2010, 81(4): 042105
https://doi.org/10.1103/PhysRevA.81.042105
42 L. Braunstein S., M. Caves C.. Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 1994, 72(22): 3439
https://doi.org/10.1103/PhysRevLett.72.3439
43 Vidal G., F. Werner R.. Computable measure of entanglement. Phys. Rev. A, 2002, 65(3): 032314
https://doi.org/10.1103/PhysRevA.65.032314
44 Sun Z., G. Wang X., Z. Hu A., Q. Li Y.. Entanglement properties in mixed-spin Heisenberg systems. Physica A, 2006, 370(2): 483
https://doi.org/10.1016/j.physa.2006.03.020
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed