1. School of Physics, Hangzhou Normal University, Hangzhou 310036, China 2. Zhejiang Institute of Modern Physics and School of Physics, Zhejiang University, Hangzhou 310027, China 3. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China 4. Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China
We study the local quantum Fisher information (LQFI) in the mixed-spin Heisenberg XXZ chain. Both the maximal and minimal LQFI are studied and the former is essential to determine the accuracy of the quantum parameter estimation, the latter can be well used to characterize the discord-type quantum correlations. We investigate the effects of the temperature and the anisotropy parameter on the maximal LQFI and thus on the accuracy of the parameter estimation. Then we make use of the minimal LQFI to study the discord-type correlations of different site pairs. Different dimensions of the subsystems cause different values of the minimal LQFI which reflects the asymmetry of the discord-type correlation. In addition, the site pairs at different positions of the spin chains have different minimal LQFI, which reveals the influence of the surrounding spins on the bipartite quantum correlation. Our results show that the LQFI obtained through a simple calculation process provides a convenient way to investigate the discord-type correlation in high-dimensional systems.
Giovannetti V., Lloyd S., Maccone L.. Quantum-enhanced measurements: Beating the standard quantum limit. Science, 2004, 306(5700): 1330 https://doi.org/10.1126/science.1104149
2
Braun D., Adesso G., Benatti F., Floreanini R., Marzolino U., W. Mitchell M., Pirandola S.. Quantum-enhanced measurements without entanglement. Rev. Mod. Phys., 2018, 90(3): 035006 https://doi.org/10.1103/RevModPhys.90.035006
3
Pezzè L., Smerzi A., K. Oberthaler M., Schmied R., Treutlein P.. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005 https://doi.org/10.1103/RevModPhys.90.035005
4
P. Dowling J., P. Seshadreesan K.. Quantum optical technologies for metrology, sensing, and imaging. J. Lightwave Technol., 2015, 33(12): 2359 https://doi.org/10.1109/JLT.2014.2386795
5
Liu J., Zhang M., Chen H., Wang L., Yuan H.. Optimal scheme for quantum metrology. Adv. Quantum Technol., 2022, 5(1): 2100080 https://doi.org/10.1002/qute.202100080
6
Demkowicz-Dobrzański R., Maccone L.. Using entanglement against noise in quantum metrology. Phys. Rev. Lett., 2014, 113(25): 250801 https://doi.org/10.1103/PhysRevLett.113.250801
Schnabel R., Mavalvala N., E. McClelland D., K. Lam P.. Quantum metrology for gravitational wave astronomy. Nat. Commun., 2010, 1(1): 121 https://doi.org/10.1038/ncomms1122
9
D. Huver S., F. Wildfeuer C., P. Dowling J.. Entangled Fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A, 2008, 78(6): 063828 https://doi.org/10.1103/PhysRevA.78.063828
10
Ahmadi M., E. Bruschi D., Sab’ın C., Adesso G., Fuentes I.. Relativistic quantum metrology: Exploiting relativity to improve quantum measurement technologies. Sci. Rep., 2014, 4(1): 4996 https://doi.org/10.1038/srep04996
Zhang M., M. Yu H., D. Yuan H., G. Wang X., Demkowicz-Dobrzański R., Liu J.. QuanEstimation: An open-source toolkit for quantum parameter estimation. Phys. Rev. Res., 2022, 4(4): 043057 https://doi.org/10.1103/PhysRevResearch.4.043057
L. Wang T., N. Wu L., Yang W., R. Jin G., Lambert N., Nori F.. Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys., 2014, 16(6): 063039 https://doi.org/10.1088/1367-2630/16/6/063039
15
Marzolino U., Prosen T.. Fisher information approach to non-equilibrium phase transitions in a quantum XXZ spin chain with boundary noise. Phys. Rev. B, 2017, 96(10): 104402 https://doi.org/10.1103/PhysRevB.96.104402
16
Hyllus P., Laskowski W., Krischek R., Schwemmer C., Wieczorek W., Weinfurter H., Pezzé L., Smerzi A.. Fisher information and multiparticle entanglement. Phys. Rev. A, 2012, 85(2): 022321 https://doi.org/10.1103/PhysRevA.85.022321
M. Lu X., Wang X., P. Sun C.. Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A, 2010, 82(4): 042103 https://doi.org/10.1103/PhysRevA.82.042103
19
Girolami D., M. Souza A., Giovannetti V., Tufarelli T., G. Filgueiras J., S. Sarthour R., O. Soares-Pinto D., S. Oliveira I., Adesso G.. Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett., 2014, 112(21): 210401 https://doi.org/10.1103/PhysRevLett.112.210401
20
S. Dhar H., N. Bera M., Adesso G.. Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A, 2015, 91(3): 032115 https://doi.org/10.1103/PhysRevA.91.032115
21
P. Chen L., N. Guo Y.. Dynamics of local quantum uncertainty and local quantum fisher information for a two-qubit system driven by classical phase noisy laser. J. Mod. Opt., 2021, 68(4): 217 https://doi.org/10.1080/09500340.2021.1887949
22
B. A. Mohamed A., Eleuch H.. Dynamics of two magnons coupled to an open microwave cavity: Local quantum Fisher- and local skew-information coherence. Eur. Phys. J. Plus, 2022, 137(7): 853 https://doi.org/10.1140/epjp/s13360-022-03042-6
23
Slaoui A.Bakmou L.Daoud M.Ahl Laamara R., A comparative study of local quantum Fisher information and local quantum uncertainty in Heisenberg XY model, Phys. Lett. A 383(19), 2241 (2019)
24
Habiballah N., Khedif Y., Daoud M.. Local quantum uncertainty in XYZ Heisenberg spin models with Dzyaloshinski‒Moriya interaction. Eur. Phys. J. D, 2018, 72(9): 154 https://doi.org/10.1140/epjd/e2018-90255-y
25
Ozaydin F., A. Altintas A.. Parameter estimation with Dzyaloshinski‒Moriya interaction under external magnetic fields. Opt. Quantum Electron., 2020, 52(2): 70 https://doi.org/10.1007/s11082-019-2185-1
26
Ozaydin F., A. Altintas A.. Quantum metrology: Surpassing the shot-noise limit with Dzyaloshinskii‒Moriya interaction. Sci. Rep., 2015, 5(1): 16360 https://doi.org/10.1038/srep16360
27
Haseli S.. Local quantum Fisher information and local quantum uncertainty in two-qubit Heisenberg XYZ chain with Dzyaloshinskii‒Moriya interactions. Laser Phys., 2020, 30(10): 105203 https://doi.org/10.1088/1555-6611/abac65
28
V. Fedorova A., A. Yurischev M.. Behavior of quantum discord, local quantum uncertainty, and local quantum Fisher information in two-spin-1/2 Heisenberg chain with DM and KSEA interactions. Quantum Inform. Process., 2022, 21(3): 92 https://doi.org/10.1007/s11128-022-03427-7
29
Liu J., X. Jing X., Zhong W., G. Wang X.. Quantum Fisher information for density matrices with arbitrary ranks. Commum. Theor. Phys., 2014, 61(1): 45 https://doi.org/10.1088/0253-6102/61/1/08
30
A. Nielsen M.L. Chuang I., Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
Groisman B., Popescu S., Winter A.. Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A, 2005, 72(3): 032317 https://doi.org/10.1103/PhysRevA.72.032317
M. Lu X.J. Xi Z.Sun Z.G. Wang X., Geometric measure of quantum discord under decoherence, Quantum Inf. Comput. 10(11–12), 0994 (2010)
35
Werlang T., Souza S., F. Fanchini F., J. Villas Boas C.. Robustness of quantum discord to sudden death. Phys. Rev. A, 2009, 80(2): 024103 https://doi.org/10.1103/PhysRevA.80.024103