Universal dynamic scaling and Contact dynamics in quenched quantum gases
Jia-Nan Cui1, Zhengqiang Zhou1, Mingyuan Sun1,2()
1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China 2. State Key Lab of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
Recently universal dynamic scaling is observed in several systems, which exhibit a spatiotemporal self-similar scaling behavior, analogous to the spatial scaling near phase transition. The latter one arises from the emergent continuous scaling symmetry. Motivated by this, we investigate the possible relation between the scaling dynamics and the continuous scaling symmetry in this paper. We derive a theorem that the scaling invariance of the quenched Hamiltonian and the initial density matrix can lead to the universal dynamic scaling. It is further demonstrated both in a two-body system analytically and in a many-body system numerically. For the latter one, we calculate the dynamics of quantum gases quenched from the zero interaction to a finite interaction via the non-equilibrium high-temperature virial expansion. A dynamic scaling of the momentum distribution appears in certain momentum-time windows at unitarity as well as in the weak interacting limit. Remarkably, this universal scaling dynamics persists approximately with smaller scaling exponents even if the scaling symmetry is fairly broken. Our findings may offer a new perspective to interpret the related experiments. We also study the Contact dynamics in the BEC−BCS crossover. Surprisingly, the half-way time displays a maximum near unitarity while some damping oscillations occur on the BEC side due to the dimer state, which can be used to detect possible two-body bound states in experiments.
Makotyn P. , E. Klauss C. , L. Goldberger D. , A. Cornell E. , S. Jin D. . Universal dynamics of a degenerate unitary Bose gas. Nat. Phys., 2014, 10(2): 116 https://doi.org/10.1038/nphys2850
2
Eigen C. , A. P. Glidden J. , Lopes R. , Navon N. , Hadzibabic Z. , P. Smith R. . Universal scaling laws in the dynamics of a homogeneous unitary Bose gas. Phys. Rev. Lett., 2017, 119(25): 250404 https://doi.org/10.1103/PhysRevLett.119.250404
3
Eigen C. , A. Glidden J. , Lopes R. , A. Cornell E. , P. Smith R. , Hadzibabic Z. . Universal prethermal dynamics of Bose gases quenched to unitarity. Nature, 2018, 563(7730): 221 https://doi.org/10.1038/s41586-018-0674-1
4
Prüfer M. , Kunkel P. , Strobel H. , Lannig S. , Linnemann D. , M. Schmied C. , Berges J. , Gasenzer T. , K. Oberthaler M. . Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature, 2018, 563(7730): 217 https://doi.org/10.1038/s41586-018-0659-0
5
Erne S. , Bucker R. , Gasenzer T. , Berges J. , Schmiedmayer J. . Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature, 2018, 563(7730): 225 https://doi.org/10.1038/s41586-018-0667-0
6
A. P. Glidden J. , Eigen C. , H. Dogra L. , A. Hilker T. , P. Smith R. , Hadzibabic Z. . Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium. Nat. Phys., 2021, 17(4): 457 https://doi.org/10.1038/s41567-020-01114-x
7
Gałka M. , Christodoulou P. , Gazo M. , Karailiev A. , Dogra N. , Schmitt J. , Hadzibabic Z. . Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett., 2022, 129(19): 190402 https://doi.org/10.1103/PhysRevLett.129.190402
8
Wei D. , Rubio-Abadal A. , Ye B. , Machado F. , Kemp J. , Srakaew K. , Hollerith S. , Rui J. , Gopalakrishnan S. , Y. Yao N. , Bloch I. , Zeiher J. . Quantum gas microscopy of Kardar‒Parisi‒Zhang superdiffusion. Science, 2022, 376(6594): 716 https://doi.org/10.1126/science.abk2397
9
Huh S.Mukherjee K.Kwon K.Seo J.I. Mistakidis S.R. Sadeghpour H.Y. Choi J., Classifying the universal coarsening dynamics of a quenched ferromagnetic condensate, arXiv: 2303.05230 (2023)
G. Sykes A. , P. Corson J. , P. D’Incao J. , P. Koller A. , H. Greene C. , M. Rey A. , R. Hazzard K. , L. Bohn J. . Quenching to unitarity: Quantum dynamics in a three-dimensional Bose gas. Phys. Rev. A, 2014, 89(2): 021601 https://doi.org/10.1103/PhysRevA.89.021601
12
Rançon A. , Levin K. . Equilibrating dynamics in quenched Bose gases: Characterizing multiple time regimes. Phys. Rev. A, 2014, 90(2): 021602 https://doi.org/10.1103/PhysRevA.90.021602
Ancilotto F. , Rossi M. , Salasnich L. , Toigo F. . Quenched dynamics of the momentum distribution of the unitary Bose gas. Few-Body Syst., 2015, 56(11-12): 801 https://doi.org/10.1007/s00601-015-0971-2
16
Yin X. , Radzihovsky L. . Postquench dynamics and prethermalization in a resonant Bose gas. Phys. Rev. A, 2016, 93(3): 033653 https://doi.org/10.1103/PhysRevA.93.033653
17
Y. Wu S. , H. Zhong H. , H. Huang J. , Z. Qin X. , H. Lee C. . Dynamic fragmentation in a quenched two-mode Bose–Einstein condensate. Front. Phys., 2016, 11(3): 110301 https://doi.org/10.1007/s11467-015-0530-9
18
E. Colussi V. , P. Corson J. , P. D’Incao J. . Dynamics of three-body correlations in quenched unitary Bose gases. Phys. Rev. Lett., 2018, 120(10): 100401 https://doi.org/10.1103/PhysRevLett.120.100401
19
E. Colussi V. , Musolino S. , J. J. M. F. Kokkelmans S. . Dynamical formation of the unitary Bose gas. Phys. Rev. A, 2018, 98(5): 051601 https://doi.org/10.1103/PhysRevA.98.051601
20
Van Regemortel M. , Kurkjian H. , Wouters M. , Carusotto I. . Prethermalization to thermalization crossover in a dilute Bose gas following an interaction ramp. Phys. Rev. A, 2018, 98(5): 053612 https://doi.org/10.1103/PhysRevA.98.053612
Musolino S. , E. Colussi V. , J. J. M. F. Kokkelmans S. . Pair formation in quenched unitary Bose gases. Phys. Rev. A, 2019, 100(1): 013612 https://doi.org/10.1103/PhysRevA.100.013612
23
Gao C. , Y. Sun M. , Zhang P. , Zhai H. . Universal dynamics of a degenerate Bose gas quenched to unitarity. Phys. Rev. Lett., 2020, 124(4): 040403 https://doi.org/10.1103/PhysRevLett.124.040403
24
Muñoz de las Heras A. , M. Parish M. , M. Marchetti F. . Early-time dynamics of Bose gases quenched into the strongly interacting regime. Phys. Rev. A, 2019, 99(2): 023623 https://doi.org/10.1103/PhysRevA.99.023623
25
E. Colussi V. , E. van Zwol B. , P. D’Incao J. , J. J. M. F. Kokkelmans S. . Bunching, clustering, and the buildup of few-body correlations in a quenched unitary Bose gas. Phys. Rev. A, 2019, 99(4): 043604 https://doi.org/10.1103/PhysRevA.99.043604
26
Bougas G. , I. Mistakidis S. , Schmelcher P. . Analytical treatment of the interaction quench dynamics of two bosons in a two-dimensional harmonic trap. Phys. Rev. A, 2019, 100(5): 053602 https://doi.org/10.1103/PhysRevA.100.053602
E. Colussi V. , Kurkjian H. , Van Regemortel M. , Musolino S. , van de Kraats J. , Wouters M. , J. J. M. F. Kokkelmans S. . Cumulant theory of the unitary Bose gas: Prethermal and Efimovian dynamics. Phys. Rev. A, 2020, 102(6): 063314 https://doi.org/10.1103/PhysRevA.102.063314
29
Bougas G. , I. Mistakidis S. , M. Alshalan G. , Schmelcher P. . Stationary and dynamical properties of two harmonically trapped bosons in the crossover from two dimensions to one. Phys. Rev. A, 2020, 102(1): 013314 https://doi.org/10.1103/PhysRevA.102.013314
30
Musolino S. , Kurkjian H. , Van Regemortel M. , Wouters M. , J. J. M. F. Kokkelmans S. , E. Colussi V. . Bose‒Einstein condensation of Efimovian triples in the unitary Bose gas. Phys. Rev. Lett., 2022, 128(2): 020401 https://doi.org/10.1103/PhysRevLett.128.020401
31
Enss T. , Cuadra Braatz N. , Gori G. . Complex scaling flows in the quench dynamics of interacting particles. Phys. Rev. A, 2022, 106(1): 013308 https://doi.org/10.1103/PhysRevA.106.013308
32
W. Fan G. , L. Chen X. , Zou P. . Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin‒orbit coupling. Front. Phys., 2022, 17(5): 52502 https://doi.org/10.1007/s11467-022-1155-4
33
M. Hu Y. , F. Fei Y. , L. Chen X. , B. Zhang Y. . Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys., 2022, 17(6): 61505 https://doi.org/10.1007/s11467-022-1192-z
34
A. Abanin D. , Altman E. , Bloch I. , Serbyn M. . Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 2019, 91(2): 021001 https://doi.org/10.1103/RevModPhys.91.021001
35
Wang C. , F. Zhang P. , Chen X. , L. Yu J. , Zhai H. . Scheme to measure the topological number of a Chern insulator from quench dynamics. Phys. Rev. Lett., 2017, 118(18): 185701 https://doi.org/10.1103/PhysRevLett.118.185701
36
Sun W. , R. Yi C. , Z. Wang B. , W. Zhang W. , C. Sanders B. , T. Xu X. , Y. Wang Z. , Schmiedmayer J. , Deng Y. , J. Liu X. , Chen S. , W. Pan J. . Uncover topology by quantum quench dynamics. Phys. Rev. Lett., 2018, 121(25): 250403 https://doi.org/10.1103/PhysRevLett.121.250403
37
F. N. Unal, N. Fläschner, B. S. Rem, A. Eckardt, K. Sengstock , C. Weitenberg. M. Tarnowski . Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun., 2019, 10(1): 1728 https://doi.org/10.1038/s41467-019-09668-y
38
Gao C. , Zhai H. , Y. Shi Z. . Dynamical fractal in quantum gases with discrete scaling symmetry. Phys. Rev. Lett., 2019, 122(23): 230402 https://doi.org/10.1103/PhysRevLett.122.230402
39
Huang K., Statistical Mechanics, John Wiley & Sons, New York, 1987
40
Sachdev S., Quantum Phase Transitions, Cambridge University Press, Cambridge, 1999
Berges J. , Rothkopf A. , Schmidt J. . Nonthermal fixed points: Effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett., 2008, 101(4): 041603 https://doi.org/10.1103/PhysRevLett.101.041603
43
Nowak B. , Schole J. , Sexty D. , Gasenzer T. . Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas. Phys. Rev. A, 2012, 85(4): 043627 https://doi.org/10.1103/PhysRevA.85.043627
Berges J. , Boguslavski K. , Schlichting S. , Venugopalan R. . Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett., 2015, 114(6): 061601 https://doi.org/10.1103/PhysRevLett.114.061601
46
P. Orioli A. , Boguslavski K. , Berges J. . Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D, 2015, 92(2): 025041 https://doi.org/10.1103/PhysRevD.92.025041
47
Chantesana I. , P. Orioli A. , Gasenzer T. . Kinetic theory of nonthermal fixed points in a Bose gas. Phys. Rev. A, 2019, 99(4): 043620 https://doi.org/10.1103/PhysRevA.99.043620
48
N. Mikheev A. , M. Schmied C. , Gasenzer T. . Low-energy effective theory of nonthermal fixed points in a multicomponent Bose gas. Phys. Rev. A, 2019, 99(6): 063622 https://doi.org/10.1103/PhysRevA.99.063622
49
M. Schmied C. , N. Mikheev A. , Gasenzer T. . Non-thermal fixed points: Universal dynamics far from equilibrium. Int. J. Mod. Phys. A, 2019, 34(29): 1941006 https://doi.org/10.1142/S0217751X19410069
50
Bhattacharyya S. , F. Rodriguez-Nieva J. , Demler E. . Universal prethermal dynamics in Heisenberg ferromagnets. Phys. Rev. Lett., 2020, 125(23): 230601 https://doi.org/10.1103/PhysRevLett.125.230601
51
Berges J. , Boguslavski K. , Mace M. , M. Pawlowski J. . Gauge-invariant condensation in the nonequilibrium quark-gluon plasma. Phys. Rev. D, 2020, 102(3): 034014 https://doi.org/10.1103/PhysRevD.102.034014
52
Fujimoto K. , Hamazaki R. , Kawaguchi Y. . Family‒Vicsek scaling of roughness growth in a strongly interacting Bose gas. Phys. Rev. Lett., 2020, 124(21): 210604 https://doi.org/10.1103/PhysRevLett.124.210604
53
Preis T. , P. Heller M. , Berges J. . Stable and unstable perturbations in universal scaling phenomena far from equilibrium. Phys. Rev. Lett., 2023, 130(3): 031602 https://doi.org/10.1103/PhysRevLett.130.031602
B. Bardon A. , Beattie S. , Luciuk C. , Cairncross W. , Fine D. , S. Cheng N. , J. A. Edge G. , Taylor E. , Zhang S. , Trotzky S. , H. Thywissen J. . Transverse demagnetization dynamics of a unitary Fermi gas. Science, 2014, 344(6185): 722 https://doi.org/10.1126/science.1247425
57
J. Fletcher R. , Lopes R. , Man J. , Navon N. , P. Smith R. , W. Zwierlein M. , Hadzibabic Z. . Two- and three-body contacts in the unitary Bose gas. Science, 2017, 355(6323): 377 https://doi.org/10.1126/science.aai8195
58
Luciuk C. , Smale S. , Böttcher F. , Sharum H. , A. Olsen B. , Trotzky S. , Enss T. , H. Thywissen J. . Observation of quantum-limited spin transport in strongly interacting two-dimensional Fermi gases. Phys. Rev. Lett., 2017, 118(13): 130405 https://doi.org/10.1103/PhysRevLett.118.130405
59
Werner F. , Castin Y. . Unitary gas in an isotropic harmonic trap: Symmetry properties and applications. Phys. Rev. A, 2006, 74(5): 053604 https://doi.org/10.1103/PhysRevA.74.053604
60
In three-dimensional unitary Bose gas, the scale invariance is only approximate because of the three-body parameter. However, experiments [1–3] show that its contribution can be insignificant in quench dynamics