Recent advances in halide perovskite memristors: From materials to applications
Sixian Liu1, Jianmin Zeng1(), Qilai Chen2(), Gang Liu1()
1. Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China 2. Aerospace Science & Industry Shenzhen (Group) Co. Ltd., Shenzhen 518000, China
With the emergence of the Internet of Things (IoT) and the rapid growth of big data generated by edge devices, there has been a growing need for electronic devices that are capable of processing and transmitting data at low power and high speeds. Traditional Complementary Metal-Oxide-Semiconductor (CMOS) devices are nonvolatile and often limited by their ability for certain IoT applications due to their unnecessary power consumption for data movement in von Neuman architecture-based systems. This has led to a surge in research and development efforts aimed at creating innovative electronic components and systems that can overcome these shortcomings and meet the evolving needs of the information era, which share features such as improved energy efficiency, higher processing speeds, and increased functionality. Memristors are a novel type of electronic device that has the potential to break down the barrier between storage and computing. By storing data and processing information within the same device, memristors can minimize the need for data movement, which allows for faster processing speeds and reduced energy consumption. To further improve the energy efficiency and reliability of memristors, there has been a growing trend toward diversifying the selection of dielectric materials used in memristors. Halide perovskites (HPs) have unique electrical and optical properties, including ion migration, charge trapping effect caused by intrinsic defects, excellent optical absorption efficiency, and high charge mobility, which makes them highly promising in applications of memristors. In this paper, we provide a comprehensive overview of the recent development in resistive switching behaviors of HPs and the underlying mechanisms. Furthermore, we summarize the diverse range of HPs, their respective performance metrics, as well as their applications in various fields. Finally, we critically evaluate the current bottlenecks and possible opportunities in the future research of HP memristors.
Zhang B.Chen W.Zeng J.Fan F.Gu J. Chen X.Yan L.Xie G.Liu S.Yan Q. J. Baik S.G. Zhang Z.Chen W.Hou J.E. El-Khouly M.Zhang Z.Liu G.Chen Y., 90% yield production of polymer nano-memristor for in-memory computing, Nat. Commun. 12(1), 1984 (2021)
3
Du L., Wang Z., Zhao G.. Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17(2): 23602 https://doi.org/10.1007/s11467-022-1152-7
4
Li Q., Li T., Zhang Y., Yu Y., Chen Z., Jin L., Li Y., Yang Y., Zhao H., Li J., Yao J.. Nonvolatile photoelectric memory with CsPbBr3 quantum dots embedded in poly(methyl methacrylate) as charge trapping layer. Org. Electron., 2020, 77: 105461 https://doi.org/10.1016/j.orgel.2019.105461
5
Hao Z., Wang H., Jiang S., Qian J., Xu X., Li Y., Pei M., Zhang B., Guo J., Zhao H., Chen J., Tong Y., Wang J., Wang X., Shi Y., Li Y.. Retina-inspired self-powered artificial optoelectronic synapses with selective detection in organic asymmetric heterojunctions. Adv. Sci. (Weinh.), 2022, 9(7): 2103494 https://doi.org/10.1002/advs.202103494
6
Y. Wang T., L. Meng J., Y. He Z., Chen L., Zhu H., Q. Sun Q., J. Ding S., Zhou P., W. Zhang D.. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. (Weinh.), 2020, 7(8): 1903480 https://doi.org/10.1002/advs.201903480
7
El-Atab N.. Memsor: Emergence of the in-memory sensing technology for the digital transformation. physica status solidi (a), 2022, 219(2): 2100528 https://doi.org/10.1002/pssa.202100528
8
C. Gonzalez-Rosillo J., Catalano S., Maggio-Aprile I., Gibert M., Obradors X., Palau A., Puig T.. Nanoscale correlations between metal−insulator transition and resistive switching effect in metallic perovskite oxides. Small, 2020, 16(23): 2001307 https://doi.org/10.1002/smll.202001307
9
Li Y., Chu J., Duan W., Cai G., Fan X., Wang X., Wang G., Pei Y.. Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater. Interfaces, 2018, 10(29): 24598 https://doi.org/10.1021/acsami.8b05749
10
Rao J., Fan Z., Hong L., Cheng S., Huang Q., Zhao J., Xiang X., J. Guo E., Guo H., Hou Z., Chen Y., Lu X., Zhou G., Gao X., M. Liu J.. An electroforming-free, analog interface-type memristor based on a SrFeOx epitaxial heterojunction for neuromorphic computing. Mater. Today Phys., 2021, 18: 100392 https://doi.org/10.1016/j.mtphys.2021.100392
11
Guan H., Sha J., Zhang Z., Xiong Y., Dong X., Bao H., Sun K., Wang S., Wang Y.. Optical and oxide modification of CsFAMAPbIBr memristor achieving low power consumption. J. Alloys Compd., 2022, 891: 162096 https://doi.org/10.1016/j.jallcom.2021.162096
12
Abbas G.Hassan M.Khan Q.Wang H.Zhou G. Zubair M.Xu X.Peng Z., A low power-consumption and transient nonvolatile memory based on highly dense all-inorganic perovskite films, Adv. Electron. Mater. 8(9), 2101412 (2022)
13
Lanza M., Sebastian A., D. Lu W., Le Gallo M., F. Chang M., Akinwande D., M. Puglisi F., N. Alshareef H., Liu M., B. Roldan J.. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science, 2022, 376(6597): eabj9979 https://doi.org/10.1126/science.abj9979
14
Yan X., Zhao Q., P. Chen A., Zhao J., Zhou Z., Wang J., Wang H., Zhang L., Li X., Xiao Z., Wang K., Qin C., Wang G., Pei Y., Li H., Ren D., Chen J., Liu Q.. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small, 2019, 15(24): 1901423 https://doi.org/10.1002/smll.201901423
15
M. Yang J., H. Lee J., K. Jung Y., Y. Kim S., H. Kim J., G. Kim S., H. Kim J., Seo S., A. Park D., W. Lee J., Walsh A., H. Park J., G. Park N.. Mixed-dimensional formamidinium bismuth iodides featuring in-situ formed type-I band structure for convolution neural networks. Adv. Sci. (Weinh.), 2022, 9(14): 2200168 https://doi.org/10.1002/advs.202200168
16
Xiao X., Hu J., Tang S., Yan K., Gao B., Chen H., Zou D.. Recent advances in halide perovskite memristors: Materials, structures, mechanisms, and applications. Adv. Mater. Technol., 2020, 5(6): 1900914 https://doi.org/10.1002/admt.201900914
Majumdar S., Chen B., H. Qin Q., S. Majumdar H., Van Dijken S.. Electrode dependence of tunneling electroresistance and switching stability in organic ferroelectric P(VDF-TrFE)-based tunnel junctions. Adv. Funct. Mater., 2018, 28(15): 1703273 https://doi.org/10.1002/adfm.201703273
20
K. Johnsen G.. An introduction to the memristor – a valuable circuit element in bioelectricity and bioimpedance. J. Electr. Bioimpedance, 2012, 3(1): 20 https://doi.org/10.5617/jeb.305
21
Spaziani L.Lu L., Silicon, GaN and SiC: There’s room for all: An application space overview of device considerations, in: 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 13−17 May, 2018, pp 8−11
22
N. Zhong Y., Wang T., Gao X., L. Xu J., D. Wang S.. Synapse-like organic thin film memristors. Adv. Funct. Mater., 2018, 28(22): 1800854 https://doi.org/10.1002/adfm.201800854
A. Tulina N., Y. Borisenko I., V. Sirotkin V.. Reproducible resistive switching effect for memory applications in heterocontacts based on strongly correlated electron systems. Phys. Lett. A, 2008, 372(44): 6681 https://doi.org/10.1016/j.physleta.2008.09.015
25
I. Park W., M. Yoon J., Park M., Lee J., K. Kim S., W. Jeong J., Kim K., Y. Jeong H., Jeon S., S. No K., Y. Lee J., S. Jung Y.. Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes. Nano Lett., 2012, 12(3): 1235 https://doi.org/10.1021/nl203597d
26
Ma Z., Ge J., Chen W., Cao X., Diao S., Liu Z., Pan S.. Reliable memristor based on ultrathin native silicon oxide. ACS Appl. Mater. Interfaces, 2022, 14(18): 21207 https://doi.org/10.1021/acsami.2c03266
27
N. Mikhaylov A., I. Belov A., V. Guseinov D., S. Korolev D., N. Antonov I., V. Efimovykh D., V. Tikhov S., P. Kasatkin A., N. Gorshkov O., I. Tetelbaum D., I. Bobrov A., V. Malekhonova N., A. Pavlov D., G. Gryaznov E., P. Yatmanov A.. Bipolar resistive switching and charge transport in silicon oxide memristor. Mater. Sci. Eng. B, 2015, 194: 48 https://doi.org/10.1016/j.mseb.2014.12.029
28
Gao Q., Huang A., Hu Q., Zhang X., Chi Y., Li R., Ji Y., Chen X., Zhao R., Wang M., Shi H., Wang M., Cui Y., Xiao Z., K. Chu P.. Stability and repeatability of a Karst-like hierarchical porous silicon oxide-based memristor. ACS Appl. Mater. Interfaces, 2019, 11(24): 21734 https://doi.org/10.1021/acsami.9b06855
29
Kim S., Kim H., Hwang S., H. Kim M., F. Chang Y., G. Park B.. Analog synaptic behavior of a silicon nitride memristor. ACS Appl. Mater. Interfaces, 2017, 9(46): 40420 https://doi.org/10.1021/acsami.7b11191
30
Kim S., Jung S., H. Kim M., C. Chen Y., F. Chang Y., C. Ryoo K., Cho S., H. Lee J., G. Park B.. Scaling effect on silicon nitride memristor with highly doped Si substrate. Small, 2018, 14(19): 1704062 https://doi.org/10.1002/smll.201704062
31
Kim D., Kim S., Kim S.. Logic-in-memory application of CMOS compatible silicon nitride memristor. Chaos Solitons Fractals, 2021, 153: 111540 https://doi.org/10.1016/j.chaos.2021.111540
32
A. Gismatulin A., A. Gritsenko V., J. Yen T., Chin A.. Charge transport mechanism in SiNx-based memristor. Appl. Phys. Lett., 2019, 115(25): 253502 https://doi.org/10.1063/1.5127039
33
A. Gismatulin A., M. Orlov O., A. Gritsenko V., N. Kruchinin V., S. Mizginov D., Y. Krasnikov G.. Charge transport mechanism in the metal–nitride–oxide–silicon forming-free memristor structure. Appl. Phys. Lett., 2020, 116(20): 203502 https://doi.org/10.1063/5.0001950
34
Schmitt R., Kubicek M., Sediva E., Trassin M., C. Weber M., Rossi A., Hutter H., Kreisel J., Fiebig M., L. M. Rupp J.. Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuromorphic computing. Adv. Funct. Mater., 2019, 29(5): 1804782 https://doi.org/10.1002/adfm.201804782
35
Lu Q., Chen Y., Bluhm H., Yildiz B.. Electronic structure evolution of SrCoOx during electrochemically driven phase transition probed by in situ X-ray spectroscopy. J. Phys. Chem. C, 2016, 120(42): 24148 https://doi.org/10.1021/acs.jpcc.6b07544
36
Nili H., Ahmed T., Walia S., Ramanathan R., E. Kandjani A., Rubanov S., Kim J., Kavehei O., Bansal V., Bhaskaran M., Sriram S.. Microstructure and dynamics of vacancy-induced nanofilamentary switching network in donor doped SrTiO3−x memristors. Nanotechnology, 2016, 27(50): 505210 https://doi.org/10.1088/0957-4484/27/50/505210
37
Mikheev V., Chouprik A., Lebedinskii Y., Zarubin S., M. Markeev A., V. Zenkevich A., Negrov D.. Memristor with a ferroelectric HfO2 layer: In which case it is a ferroelectric tunnel junction. Nanotechnology, 2020, 31(21): 215205 https://doi.org/10.1088/1361-6528/ab746d
38
U. Siddiqui G., M. Rehman M., H. Choi K.. Enhanced resistive switching in all-printed, hybrid and flexible memory device based on perovskite ZnSnO3 via PVOH polymer. Polymer (Guildf.), 2016, 100: 102 https://doi.org/10.1016/j.polymer.2016.07.081
39
Ahmed T., Walia S., L. H. Mayes E., Ramanathan R., Guagliardo P., Bansal V., Bhaskaran M., J. Yang J., Sriram S.. Inducing tunable switching behavior in a single memristor. Appl. Mater. Today, 2018, 11: 280 https://doi.org/10.1016/j.apmt.2018.03.003
40
Marinkovic S., Fernandez-Rodriguez A., Collienne S., B. Alvarez S., Melinte S., Maiorov B., Rius G., Granados X., Mestres N., Palau A., V. Silhanek A.. Direct visualization of current-stimulated oxygen migration in YBa2Cu3O7−δ thin films. ACS Nano, 2020, 14(9): 11765 https://doi.org/10.1021/acsnano.0c04492
41
Shen Z., Zhao C., Qi Y., Z. Mitrovic I., Yang L., Wen J., Huang Y., Li P., Zhao C.. Memristive non-volatile memory based on graphene materials. Micromachines (Basel), 2020, 11(4): 341 https://doi.org/10.3390/mi11040341
42
T. Zhang H., J. Park T., N. M. N. Islam A., S. J. Tran D., Manna S., Wang Q., Mondal S., Yu H., Banik S., Cheng S., Zhou H., Gamage S., Mahapatra S., Zhu Y., Abate Y., Jiang N., K. R. S. Sankaranarayanan S., Sengupta A., Teuscher C., Ramanathan S.. Reconfigurable perovskite nickelate electronics for artificial intelligence. Science, 2022, 375(6580): 533 https://doi.org/10.1126/science.abj7943
43
J. Choi B., C. Torrezan A., P. Strachan J., G. Kotula P., J. Lohn A., J. Marinella M., Li Z., S. Williams R., J. Yang J.. High-speed and low-energy nitride memristors. Adv. Funct. Mater., 2016, 26(29): 5290 https://doi.org/10.1002/adfm.201600680
44
J. Choi B., J. Yang J., X. Zhang M., J. Norris K., A. Ohlberg D., P. Kobayashi N., Medeiros-Ribeiro G., S. Williams R.. Nitride memristors. Appl. Phys A, 2012, 109(1): 1 https://doi.org/10.1007/s00339-012-7052-x
45
K. Perla V., K. Ghosh S., Mallick K.. Transport mechanism of copper sulfide embedded carbon nitride thin films: A formation free memristor. Mater. Adv., 2020, 1(2): 228 https://doi.org/10.1039/D0MA00062K
46
Zhang W., Gao H., Deng C., Lv T., Hu S., Wu H., Xue S., Tao Y., Deng L., Xiong W.. An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction. Nanoscale, 2021, 13(26): 11497 https://doi.org/10.1039/D1NR01683K
47
N. Belov A., A. Golishnikov A., M. Mastinin A., A. Perevalov A., I. Shevyakov V.. Study of the formation process of memristor structures based on copper sulfide. Semiconductors, 2019, 53(15): 2024 https://doi.org/10.1134/S1063782619150041
48
Patel M., R. Hemanth N., Gosai J., Mohili R., Solanki A., Roy M., Fang B., K. Chaudhari N.. Mxenes: Promising 2D memristor materials for neuromorphic computing components. Trends Chem., 2022, 4(9): 835 https://doi.org/10.1016/j.trechm.2022.06.004
49
He N., Liu X., Gao F., Zhang Q., Zhang M., Wang Y., Shen X., Wan X., Lian X., Hu E., He L., Xu J., Tong Y.. Demonstration of 2D mxene memristor: Stability, conduction mechanism, and synaptic plasticity. Mater. Lett., 2020, 266: 127413 https://doi.org/10.1016/j.matlet.2020.127413
50
Wang K.Jia Y.Yan X., A biomimetic afferent nervous system based on the flexible artificial synapse, Nano Energy 100, 107486 (2022)
51
Qi Y.Sun B. Fu G.Li T. Zhu S.Zheng L.Mao S.Kan X.Lei M. Chen Y., A nonvolatile organic resistive switching memory based on lotus leaves, Chem. Phys. 516, 168 (2019)
52
Berzina T., Smerieri A., Bernabò M., Pucci A., Ruggeri G., Erokhin V., P. Fontana M.. Optimization of an organic memristor as an adaptive memory element. J. Appl. Phys., 2009, 105(12): 124515 https://doi.org/10.1063/1.3153944
53
Sun K., Chen J., Yan X.. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater., 2021, 31(8): 2006773 https://doi.org/10.1002/adfm.202006773
54
Nasrin K., Sudharshan V., Subramani K., Sathish M.. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review. Adv. Funct. Mater., 2022, 32(18): 2110267 https://doi.org/10.1002/adfm.202110267
55
Feng X.Yu Z.Sun Y.Shan M.Long R. Li X., 3D MXene/Ag2S material as schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance, Separ. Purif. Tech. 266, 118606 (2021)
56
Zhang L., Khan K., Zou J., Zhang H., Li Y.. Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis. Adv. Mater. Interfaces, 2019, 6(22): 1901329 https://doi.org/10.1002/admi.201901329
57
Jonker G., Van Santen J.. Ferromagnetic compounds of manganese with perovskite structure. Physica, 1950, 16(3): 337
58
N. Jeong D., M. Yang J., G. Park N.. Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31(15): 152001 https://doi.org/10.1088/1361-6528/ab59ed
59
Fang Y., Zhai S., Chu L., Zhong J.. Advances in halide perovskite memristor from lead-based to lead-free materials. ACS Appl. Mater. Interfaces, 2021, 13(15): 17141 https://doi.org/10.1021/acsami.1c03433
60
Yan K., Dong B., Xiao X., Chen S., Chen B., Gao X., Hu H., Wen W., Zhou J., Zou D.. Memristive property’s effects on the I−V characteristics of perovskite solar cells. Sci. Rep., 2017, 7(1): 6025 https://doi.org/10.1038/s41598-017-05508-5
61
J. Gogoi H., T. Mallajosyula A.. Enhancing the switching performance of CH3NH3PbI3 memristors by the control of size and characterization parameters. Adv. Electron. Mater., 2021, 7(11): 2100472 https://doi.org/10.1002/aelm.202100472
62
J. Kwak K., H. Baek J., E. Lee D., H. Im I., Kim J., J. Kim S., J. Lee Y., Y. Kim J., W. Jang H.. Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing. Nano Lett., 2022, 22(14): 6010 https://doi.org/10.1021/acs.nanolett.2c01272
63
Feng Y., Gao X., N. Zhong Y., L. Wu J., L. Xu J., D. Wang S.. Solution‐processed polymer thin‐film memristors with an electrochromic feature and frequency‐dependent synaptic plasticity. Adv. Intell. Syst., 2019, 1(3): 1900022 https://doi.org/10.1002/aisy.201900022
64
A. John R., Yantara N., F. Ng Y., Narasimman G., Mosconi E., Meggiolaro D., R. Kulkarni M., K. Gopalakrishnan P., A. Nguyen C., De Angelis F., G. Mhaisalkar S., Basu A., Mathews N.. Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Adv. Mater., 2018, 30(51): 1805454 https://doi.org/10.1002/adma.201805454
65
Li D., Wu H., C. Cheng H., Wang G., Huang Y., Duan X.. Electronic and ionic transport dynamics in organolead halide perovskites. ACS Nano, 2016, 10(7): 6933 https://doi.org/10.1021/acsnano.6b02795
66
Ramasamy P., H. Lim D., Kim B., H. Lee S., S. Lee M., S. Lee J.. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. (Camb.), 2016, 52(10): 2067 https://doi.org/10.1039/C5CC08643D
67
Hu X., Zhang X., Liang L., Bao J., Li S., Yang W., Xie Y.. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater., 2014, 24(46): 7373 https://doi.org/10.1002/adfm.201402020
68
Joseph E., P. Madhusudanan S., Mohanta K., Karthega M., K. Batabyal S.. Multiple negative differential resistance in perovskite (CH3NH3PbI3) decorated electrospun TiO2 nanofibers. Appl. Phys A, 2020, 126(9): 707 https://doi.org/10.1007/s00339-020-03877-9
69
Hao D., Zhang J., Dai S., Zhang J., Huang J.. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces, 2020, 12(35): 39487 https://doi.org/10.1021/acsami.0c10851
70
Wang P., Bai X., Sun C., Zhang X., Zhang T., Zhang Y.. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots. Appl. Phys. Lett., 2016, 109(6): 063106 https://doi.org/10.1063/1.4960662
71
Sun Y., Qian L., Xie D., Lin Y., Sun M., Li W., Ding L., Ren T., Palacios T.. Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater., 2019, 29(28): 1902538 https://doi.org/10.1002/adfm.201902538
72
Sun Y.. et al.. Research progress of solution processed all-inorganic perovskite solar cell. Acta Phys. Sin., 2019, 68(15): 158806 https://doi.org/10.7498/aps.68.20190355
73
You Q., Huang F., Fang F., Zhu J., Zheng Y., Fang S., Zhou B., Li H., Han C., Shi Y.. Controllable volatile-to-nonvolatile memristive switching in single-crystal lead-free double perovskite with ultralow switching electric field. Sci. China Mater., 2023, 66(1): 241 https://doi.org/10.1007/s40843-022-2113-y
74
Protesescu L., Yakunin S., I. Bodnarchuk M., Krieg F., Caputo R., H. Hendon C., X. Yang R., Walsh A., V. Kovalenko M., Nanocrystals of cesium lead halide perovskites (CsPbX, X = Cl. Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15(6): 3692 https://doi.org/10.1021/nl5048779
75
D. Folie B., A. Tan J., Huang J., C. Sercel P., Delor M., Lai M., L. Lyons J., Bernstein N., L. Efros A., Yang P., S. Ginsberg N.. Effect of anisotropic confinement on electronic structure and dynamics of band edge excitons in inorganic perovskite nanowires. J. Phys. Chem. A, 2020, 124(9): 1867 https://doi.org/10.1021/acs.jpca.9b11981
76
Li P., Chen Y., Yang T., Wang Z., Lin H., Xu Y., Li L., Mu H., N. Shivananju B., Zhang Y., Zhang Q., Pan A., Li S., Tang D., Jia B., Zhang H., Bao Q.. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces, 2017, 9(14): 12759 https://doi.org/10.1021/acsami.7b01709
77
Liu X., Wang Y., Wu T., He X., Meng X., Barbaud J., Chen H., Segawa H., Yang X., Han L.. Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun., 2020, 11(1): 2678 https://doi.org/10.1038/s41467-020-16561-6
78
M. Lee M., Teuscher J., Miyasaka T., N. Murakami T., J. Snaith H.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643 https://doi.org/10.1126/science.1228604
79
S. Kim H., R. Lee C., H. Im J., B. Lee K., Moehl T., Marchioro A., J. Moon S., Humphry-Baker R., H. Yum J., E. Moser J., Grätzel M., G. Park N.. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2(1): 591 https://doi.org/10.1038/srep00591
80
Kojima A., Teshima K., Shirai Y., Miyasaka T.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050 https://doi.org/10.1021/ja809598r
81
NREL, Best Research-Cell Efficiency Chart, URL: www.nrel.gov/pv/cell-efficiency.html
82
C. Schmidt L., Pertegás A., González-Carrero S., Malinkiewicz O., Agouram S., Minguez Espallargas G., J. Bolink H., E. Galian R., Pérez-Prieto J.. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc., 2014, 136(3): 850 https://doi.org/10.1021/ja4109209
83
H. Kim Y., S. Kim J., W. Lee T.. Strategies to improve luminescence efficiency of metal‐halide perovskites and light‐emitting diodes. Adv. Mater., 2019, 31(47): 1804595 https://doi.org/10.1002/adma.201804595
84
C. Wang H., Wang W., C. Tang A., Y. Tsai H., Bao Z., Ihara T., Yarita N., Tahara H., Kanemitsu Y., Chen S., S. Liu R.. High‐performance CsPb1−xSnxBr3 perovskite quantum dots for light‐emitting diodes. Angew. Chem., 2017, 129(44): 13838 https://doi.org/10.1002/ange.201706860
85
Basiricò L., Ciavatti A., Fraboni B.. Solution-grown organic and perovskite X-ray detectors: A new paradigm for the direct detection of ionizing radiation. Adv. Mater. Technol., 2021, 6(1): 2000475 https://doi.org/10.1002/admt.202000475
86
Ahmadi M.Wu T.Hu B., A review on organic–inorganic halide perovskite photodetectors: Device engineering and fundamental physics, Adv. Mater. 29(41), 1605242 (2017)
87
F. Leung S.T. Ho K.K. Kung P.K. S. Hsiao V.N. Alshareef H.L. Wang Z.H. He J., A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity, Adv. Mater. 30(8), 1704611 (2018)
88
H. Kim Y., Kim S., Kakekhani A., Park J., Park J., H. Lee Y., Xu H., Nagane S., B. Wexler R., H. Kim D., H. Jo S., Martínez-Sarti L., Tan P., Sadhanala A., S. Park G., W. Kim Y., Hu B., J. Bolink H., Yoo S., H. Friend R., M. Rappe A., W. Lee T.. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics, 2021, 15(2): 148 https://doi.org/10.1038/s41566-020-00732-4
89
Hu M., Jia S., Liu Y., Cui J., Zhang Y., Su H., Cao S., Mo L., Chu D., Zhao G., Zhao K., Yang Z., F. Liu S.. Large and dense organic–inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Appl. Mater. Interfaces, 2020, 12(14): 16592 https://doi.org/10.1021/acsami.9b23158
90
Tress W., Marinova N., Moehl T., M. Zakeeruddin S., K. Nazeeruddin M., Grätzel M.. Understanding the rate-dependent J−V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci., 2015, 8(3): 995 https://doi.org/10.1039/C4EE03664F
91
Shao Y., Xiao Z., Bi C., Yuan Y., Huang J.. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun., 2014, 5(1): 5784 https://doi.org/10.1038/ncomms6784
92
L. Unger E., T. Hoke E., D. Bailie C., H. Nguyen W., R. Bowring A., Heumüller T., G. Christoforo M., D. Mcgehee M.. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci., 2014, 7(11): 3690 https://doi.org/10.1039/C4EE02465F
93
S. Yang W., W. Park B., H. Jung E., J. Jeon N., C. Kim Y., U. Lee D., S. Shin S., Seo J., K. Kim E., H. Noh J., I. Seok S.. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376 https://doi.org/10.1126/science.aan2301
94
Yu Y., Li J., Geng D., Wang J., Zhang L., L. Andrew T., S. Arnold M., Wang X.. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. ACS Nano, 2015, 9(1): 564 https://doi.org/10.1021/nn5058672
95
S. Sanchez R., Gonzalez-Pedro V., W. Lee J., G. Park N., S. Kang Y., Mora-Sero I., Bisquert J.. Slow dynamic processes in lead halide perovskite solar cells: Characteristic times and hysteresis. J. Phys. Chem. Lett., 2014, 5(13): 2357 https://doi.org/10.1021/jz5011187
96
H. Heo J., H. Song D., J. Han H., Y. Kim S., H. Kim J., Kim D., W. Shin H., K. Ahn T., Wolf C., W. Lee T., H. Im S.. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv. Mater., 2015, 27(22): 3424 https://doi.org/10.1002/adma.201500048
97
Zawal P., Mazur T., Lis M., Chiolerio A., Szacilowski K.. Light-induced synaptic effects controlled by incorporation of charge-trapping layer into hybrid perovskite memristor. Adv. Electron. Mater., 2022, 8(4): 2100838 https://doi.org/10.1002/aelm.202100838
98
Eames C., M. Frost J., R. F. Barnes P., C. O’regan B., Walsh A., S. Islam M.. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun., 2015, 6(1): 7497 https://doi.org/10.1038/ncomms8497
99
M. Azpiroz J., Mosconi E., Bisquert J., De Angelis F.. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci., 2015, 8(7): 2118 https://doi.org/10.1039/C5EE01265A
100
Liu P., Wang W., Liu S., Yang H., Shao Z.. Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater., 2019, 9(13): 1803017 https://doi.org/10.1002/aenm.201803017
101
Kim H., S. Han J., Choi J., Y. Kim S., W. Jang H.. Halide perovskites for applications beyond photovoltaics. Small Methods, 2018, 2(3): 1700310 https://doi.org/10.1002/smtd.201700310
102
Li T., Yu H., H. Y. Chen S., Zhou Y., T. Han S.. The strategies of filament control for improving the resistive switching performance. J. Mater. Chem. C, 2020, 8(46): 16295 https://doi.org/10.1039/D0TC03639K
103
Li T.Yu H. Xiong Z.Gao Z.Zhou Y.T. Han S., 2D oriented covalent organic frameworks for alcohol-sensory synapses, Mater. Horiz. 8(7), 2041 (2021)
104
Yang Y., Gao W., Xie Z., Wang Y., Yuan G., M. Liu J.. An all-inorganic, transparent, flexible, and nonvolatile resistive memory. Adv. Electron. Mater., 2018, 4(12): 1800412 https://doi.org/10.1002/aelm.201800412
105
Tian X., Wang L., Wei J., Yang S., Wang W., Xu Z., Bai X.. Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ tem. Nano Res., 2014, 7(7): 1065 https://doi.org/10.1007/s12274-014-0469-0
106
Chen J., Feng Z., Luo M., Wang J., Wang Z., Gong Y., Huang S., Qian F., Zhou Y., T. Han S.. High-performance perovskite memristor by integrating a tip-shape contact. J. Mater. Chem. C, 2021, 9(43): 15435 https://doi.org/10.1039/D1TC04164A
107
L. Park H., H. Kim M., H. Lee S.. Introduction of interfacial load polymeric layer to organic flexible memristor for regulating conductive filament growth. Adv. Electron. Mater., 2020, 6(10): 2000582 https://doi.org/10.1002/aelm.202000582
108
Chen Q., Lin M., Wang Z., Zhao X., Cai Y., Liu Q., Fang Y., Yang Y., He M., Huang R.. Low power parylene-based memristors with a graphene barrier layer for flexible electronics applications. Adv. Electron. Mater., 2019, 5(9): 1800852 https://doi.org/10.1002/aelm.201800852
109
Yoo E., Lyu M., H. Yun J., Kang C., Choi Y., Wang L.. Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3−xClx/FTO structure. J. Mater. Chem. C, 2016, 4(33): 7824 https://doi.org/10.1039/C6TC02503J
110
Choi J., V. Le Q., Hong K., W. Moon C., S. Han J., C. Kwon K., R. Cha P., Kwon Y., Y. Kim S., W. Jang H.. Enhanced endurance organolead halide perovskite resistive switching memories operable under an extremely low bending radius. ACS Appl. Mater. Interfaces, 2017, 9(36): 30764 https://doi.org/10.1021/acsami.7b08197
111
Lee S., Wolfe S., Torres J., Yun M., K. Lee J.. Asymmetric bipolar resistive switching of halide perovskite film in contact with TiO2 layer. ACS Appl. Mater. Interfaces, 2021, 13(23): 27209 https://doi.org/10.1021/acsami.1c06278
112
Ku B., Koo B., S. Sokolov A., J. Ko M., Choi C.. Two-terminal artificial synapse with hybrid organic-inorganic perovskite (CH3NH3)PbI3 and low operating power energy (similar to 47 fJ/μm2). J. Alloys Compd., 2020, 833: 155064 https://doi.org/10.1016/j.jallcom.2020.155064
113
Gonzales C., Guerrero A.. Mechanistic and kinetic analysis of perovskite memristors with buffer layers: The case of a two-step set process. J. Phys. Chem. Lett., 2023, 14(6): 1395 https://doi.org/10.1021/acs.jpclett.2c03669
114
Tan H., Liu G., Zhu X., Yang H., Chen B., Chen X., Shang J., D. Lu W., Wu Y., W. Li R.. An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv. Mater., 2015, 27(17): 2797 https://doi.org/10.1002/adma.201500039
115
Ruan W., Hu Y., Qiu T., Bai F., Zhang S., Xu F.. Morphological regulation of all-inorganic perovskites for multilevel resistive switching. J. Phys. Chem. Solids, 2019, 127: 258 https://doi.org/10.1016/j.jpcs.2018.12.033
116
Ge S., Guan X., Wang Y., H. Lin C., Cui Y., Huang Y., Zhang X., Zhang R., Yang X., Wu T.. Low-dimensional lead-free inorganic perovskites for resistive switching with ultralow bias. Adv. Funct. Mater., 2020, 30(25): 2002110 https://doi.org/10.1002/adfm.202002110
117
Paramanik S., Maiti A., Chatterjee S., J. Pal A.. Large resistive switching and artificial synaptic behaviors in layered Cs3Sb2I9 lead-free perovskite memory devices. Adv. Electron. Mater., 2022, 8(1): 2100237 https://doi.org/10.1002/aelm.202100237
118
Liu Z., Cheng P., Li Y., Kang R., Zhou J., Zhao J., Zuo Z.. Multilevel halide perovskite memristors based on optical & electrical resistive switching effects. Mater. Chem. Phys., 2022, 288: 126393 https://doi.org/10.1016/j.matchemphys.2022.126393
119
Wu S., Ren L., Qing J., Yu F., Yang K., Yang M., Wang Y., Meng M., Zhou W., Zhou X., Li S.. Bipolar resistance switching in transparent ITO/LaAlO3/SrTiO3 memristors. ACS Appl. Mater. Interfaces, 2014, 6(11): 8575 https://doi.org/10.1021/am501387w
120
Nili H., Walia S., Balendhran S., B. Strukov D., Bhaskaran M., Sriram S.. Nanoscale resistive switching in amorphous perovskite oxide (a-SrTiO3) memristors. Adv. Funct. Mater., 2014, 24(43): 6741 https://doi.org/10.1002/adfm.201401278
121
S. Han J., V. Le Q., Choi J., Kim H., G. Kim S., Hong K., W. Moon C., L. Kim T., Y. Kim S., W. Jang H.. Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching toward environment-friendly and temperature-tolerant nonvolatile memories. ACS Appl. Mater. Interfaces, 2019, 11(8): 8155 https://doi.org/10.1021/acsami.8b15769
122
Xu J., Wu Y., Li Z., Liu X., Cao G., Yao J.. Resistive switching in nonperovskite-phase CsPbI3 film-based memory devices. ACS Appl. Mater. Interfaces, 2020, 12(8): 9409 https://doi.org/10.1021/acsami.9b17680
123
Zhang X., Yang H., Jiang Z., Zhang Y., Wu S., Pan H., Khisro N., Chen X.. Photoresponse of nonvolatile resistive memory device based on all-inorganic perovskite CsPbBr3 nanocrystals. J. Phys. D, 2019, 52(12): 125103 https://doi.org/10.1088/1361-6463/aafe8e
124
Cho B., Song S., Ji Y., W. Kim T., Lee T.. Organic resistive memory devices: Performance enhancement, integration, and advanced architectures. Adv. Funct. Mater., 2011, 21(15): 2806 https://doi.org/10.1002/adfm.201100686
Luo Q., Zhang X., Hu Y., Gong T., Xu X., Yuan P., Ma H., Dong D., Lv H., Long S., Liu Q., Liu M.. Self-rectifying and forming-free resistive-switching device for embedded memory application. IEEE Electron Device Lett., 2018, 39(5): 664 https://doi.org/10.1109/LED.2018.2821162
127
S. Anjali B., S. Patial B., Thakur N.. High field conduction in Pb doped amorphous Se−Te system. AIP Conf. Proc., 2018, 1953(1): 090032 https://doi.org/10.1063/1.5032879
128
H. Liu Z., I. Ng G., Arulkumaran S., K. T. Maung Y., Zhou H.. Temperature-dependent forward gate current transport in atomic-layer-deposited Al2O3/AlGaN/GaN metal−insulator−semiconductor high electron mobility transistor. Appl. Phys. Lett., 2011, 98(16): 163501 https://doi.org/10.1063/1.3573794
129
Xu C., Zhang B., C. Wang A., Cai W., Zi Y., Feng P., L. Wang Z.. Effects of metal work function and contact potential difference on electron thermionic emission in contact electrification. Adv. Funct. Mater., 2019, 29(29): 1903142 https://doi.org/10.1002/adfm.201903142
130
Li W.Jena D. G. Xing H., A unified thermionic and thermionic-field emission (TE–TFE) model for ideal Schottky reverse-bias leakage current, J. Appl. Phys. 131(1), 015702 (2022)
131
Kunwar S.B. Somodi C.A. Lalk R.X. Rutherford B.Corey Z. Roy P.Zhang D.Hellenbrand M.Xiao M.L. Macmanus-Driscoll J.Jia Q.Wang H.Joshua Yang J.Nie W.Chen A., Protons: Critical species for resistive switching in interface-type memristors Adv. Electron. Mater. 9(1), 2200816 (2023)
132
Bagdzevicius S., Maas K., Boudard M., Burriel M.. Interface-type resistive switching in perovskite materials. J. Electroceram., 2017, 39(1−4): 157 https://doi.org/10.1007/s10832-017-0087-9
133
Drozdowski D., Gągor A., Stefańska D., K. Zarȩba J., Fedoruk K., Mączka M., Sieradzki A.. Three-dimensional methylhydrazinium lead halide perovskites: Structural changes and effects on dielectric, linear, and nonlinear optical properties entailed by the halide tuning. J. Phys. Chem. C, 2022, 126(3): 1600 https://doi.org/10.1021/acs.jpcc.1c07911
134
Tang G., Xiao Z., Hong J.. Designing two-dimensional properties in three-dimensional halide perovskites via orbital engineering. J. Phys. Chem. Lett., 2019, 10(21): 6688 https://doi.org/10.1021/acs.jpclett.9b02530
135
Saparov B., B. Mitzi D.. Organic–inorganic perovskites: Structural versatility for functional materials design. Chem. Rev., 2016, 116(7): 4558 https://doi.org/10.1021/acs.chemrev.5b00715
136
Tao S., Schmidt I., Brocks G., Jiang J., Tranca I., Meerholz K., Olthof S.. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun., 2019, 10(1): 2560 https://doi.org/10.1038/s41467-019-10468-7
137
L. Z. Hoye R., Hidalgo J., A. Jagt R., P. Correa-Baena J., Fix T., L. Macmanus-Driscoll J.. The role of dimensionality on the optoelectronic properties of oxide and halide perovskites, and their halide derivatives. Adv. Energy Mater., 2022, 12(4): 2100499 https://doi.org/10.1002/aenm.202100499
138
Deng Y., Peng E., Shao Y., Xiao Z., Dong Q., Huang J.. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci., 2015, 8(5): 1544 https://doi.org/10.1039/C4EE03907F
139
Xiao Z., Bi C., Shao Y., Dong Q., Wang Q., Yuan Y., Wang C., Gao Y., Huang J.. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 2014, 7(8): 2619 https://doi.org/10.1039/C4EE01138D
140
Miyata A., Mitioglu A., Plochocka P., Portugall O., T. W. Wang J., D. Stranks S., J. Snaith H., J. Nicholas R.. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys., 2015, 11(7): 582 https://doi.org/10.1038/nphys3357
141
C. Stoumpos C., G. Kanatzidis M.. Halide perovskites: Poor man’s high-performance semiconductors. Adv. Mater., 2016, 28(28): 5778 https://doi.org/10.1002/adma.201600265
142
Zhao X., Xu H., Wang Z., Lin Y., Liu Y.. Memristors with organic-inorganic halide perovskites. InfoMat, 2019, 1(2): 183 https://doi.org/10.1002/inf2.12012
143
Liu Y., A. Renna L., B. Thompson H., A. Page Z., Emrick T., D. Barnes M., Bag M., Venkataraman D., P. Russell T.. Role of ionic functional groups on ion transport at perovskite interfaces. Adv. Energy Mater., 2017, 7(21): 1701235 https://doi.org/10.1002/aenm.201701235
144
Gupta V., Lucarelli G., Castro-Hermosa S., Brown T., Ottavi M.. Investigation of hysteresis in hole transport layer free metal halide perovskites cells under dark conditions. Nanotechnology, 2020, 31(44): 445201 https://doi.org/10.1088/1361-6528/aba713
145
Haque F., Mativenga M.. Halide perovskite memtransistor enabled by ion migration. Jpn. J. Appl. Phys., 2020, 59(8): 081002 https://doi.org/10.35848/1347-4065/aba5e1
146
Patil H., Kim H., D. Kadam K., Rehman S., A. Patil S., Aziz J., D. Dongale T., Ali Sheikh Z., Khalid Rahmani M., F. Khan M., K. Kim D.. Flexible organic–inorganic halide perovskite-based diffusive memristor for artificial nociceptors. ACS Appl. Mater. Interfaces, 2023, 15(10): 13238 https://doi.org/10.1021/acsami.2c16481
147
Q. Yang J., Wang R., P. Wang Z., Y. Ma Q., Y. Mao J., Ren Y., Yang X., Zhou Y., T. Han S.. Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks. Nano Energy, 2020, 74: 104828 https://doi.org/10.1016/j.nanoen.2020.104828
148
M. Samardzic N., S. Bajic J., L. Sekulic D., Dautovic S.. Volatile memristor in leaky integrate-and-fire neurons: Circuit simulation and experimental study. Electronics (Basel), 2022, 11(6): 894 https://doi.org/10.3390/electronics11060894
149
J. Lee T., K. Kim S., Y. Seong T.. Sputtering-deposited amorphous SrVOx-based memristor for use in neuromorphic computing. Sci. Rep., 2020, 10(1): 5761 https://doi.org/10.1038/s41598-020-62642-3
150
Gong Y., Xing X., Lv Z., Chen J., Xie P., Wang Y., Huang S., Zhou Y., T. Han S.. Ultrasensitive flexible memory phototransistor with detectivity of 1.8 × 1013 Jones for artificial visual nociceptor. Adv. Intell. Syst., 2022, 4(8): 2100257 https://doi.org/10.1002/aisy.202100257
151
A. John R., Yantara N., E. Ng S., I. B. Patdillah M., R. Kulkarni M., F. Jamaludin N., Basu J., G. Ankit S., G. Mhaisalkar S., Basu A., Mathews N.. Diffusive and drift halide perovskite memristive barristors as nociceptive and synaptic emulators for neuromorphic computing. Adv. Mater., 2021, 33(15): 2007851 https://doi.org/10.1002/adma.202007851
152
Das U., Sarkar P., Paul B., Roy A.. Halide perovskite two-terminal analog memristor capable of photo-activated synaptic weight modulation for neuromorphic computing. Appl. Phys. Lett., 2021, 118(18): 182103 https://doi.org/10.1063/5.0049161
153
Wang S.Xiong Y.Dong X.Sha J.Wu Y. Li W.Wang Y. Capacitive coupling behaviors based on triple cation organic−inorganic hybrid perovskite memristor J. Alloys Compd. 874, 159884 (2021)
154
Zhou G., Sun B., Ren Z., Wang L., Xu C., Wu B., Li P., Yao Y., Duan S.. Resistive switching behaviors and memory logic functions in single MnOx nanorod modulated by moisture. Chem. Commun. (Camb.), 2019, 55(67): 9915 https://doi.org/10.1039/C9CC04069B
155
A. Haque M.Syed A.H. Akhtar F.Shevate R.Singh S. V. Peinemann K.Baran D.Wu T., Giant humidity effect on hybrid halide perovskite microstripes: Reversibility and sensing mechanism ACS Appl. Mater. Interfaces 11(33), 29821 (2019)
156
M. A. Leguy A., Hu Y., Campoy-Quiles M., I. Alonso M., J. Weber O., Azarhoosh P., Van Schilfgaarde M., T. Weller M., Bein T., Nelson J., Docampo P., R. F. Barnes P.. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater., 2015, 27(9): 3397 https://doi.org/10.1021/acs.chemmater.5b00660
157
Zhang X., Zhao X., Shan X., Tian Q., Wang Z., Lin Y., Xu H., Liu Y.. Humidity effect on resistive switching characteristics of the CH3NH3PbI3 memristor. ACS Appl. Mater. Interfaces, 2021, 13(24): 28555 https://doi.org/10.1021/acsami.1c05590
158
Kulbak M., Cahen D., Hodes G.. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett., 2015, 6(13): 2452 https://doi.org/10.1021/acs.jpclett.5b00968
159
Yin Y.Yao Z.Xia Y.Chen H., A method to improve the performance of all-inorganic halide perovskite CsPbBr3 memory, Mater. Res. Express 9(6), 065007 (2022)
160
Wang Y., Li X., Song J., Xiao L., Zeng H., Sun H.. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater., 2015, 27(44): 7101 https://doi.org/10.1002/adma.201503573
161
Liu S., Guan J., Yin L., Zhou L., Huang J., Mu Y., Han S., Pi X., Liu G., Gao P., Zhou S.. Solution-processed synaptic memristors based on halide perovskite nanocrystals. J. Phys. Chem. Lett., 2022, 13(47): 10994 https://doi.org/10.1021/acs.jpclett.2c02900
Liu Z., Cheng P., Li Y., Kang R., Zhang Z., Zuo Z., Zhao J.. High temperature CsPbBrxI3−x memristors based on hybrid electrical and optical resistive switching effects. ACS Appl. Mater. Interfaces, 2021, 13(49): 58885 https://doi.org/10.1021/acsami.1c13561
164
Zhai S., Gong J., Feng Y., Que Z., Mao W., He X., Xie Y., A. Li X., Chu L.. Multilevel resistive switching in stable all-inorganic n−i−p double perovskite memristor. iScience, 2023, 26(4): 106461 https://doi.org/10.1016/j.isci.2023.106461
165
D. Dissanayake P., M. Yeom K., Sarkar B., S. Alessi D., Hou D., Rinklebe J., H. Noh J., S. Ok Y.. Environmental impact of metal halide perovskite solar cells and potential mitigation strategies: A critical review. Environ. Res., 2023, 219: 115066 https://doi.org/10.1016/j.envres.2022.115066
166
Zheng Y.Luo F.Ruan L.Tong J.Yan L. Sun C.Zhang X., A facile fabrication of lead-free Cs2NaBiI6 double perovskite films for memory device application, J. Alloys Compd. 909, 164613 (2022)
167
Zhang J.Han S.Ji C.Zhang W.Wang Y. Tao K.Sun Z.Luo J., [(CH3)3NH]3Bi2I9: A polar lead-free hybrid perovskite-like material as a potential semiconducting absorber, Chemistry 23(68), 17304 (2017)
168
Ni Z.Zhu Y. Ju S.Xu Z. Tian F.Hu H.Guo T.Li F., E-synapse based on lead-free organic halide perovskite (CH3NH3)3Sb2Cl9 for neuromorphic computing, IEEE Trans. Electron Dev. 68(9), 4425 (2021)
169
Krishnamoorthy T., Ding H., Yan C., L. Leong W., Baikie T., Zhang Z., Sherburne M., Li S., Asta M., Mathews N., G. Mhaisalkar S.. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A, 2015, 3(47): 23829 https://doi.org/10.1039/C5TA05741H
170
Shankar H., Jha A., Kar P.. Water-assisted synthesis of lead-free Cu based fluorescent halide perovskite nanostructures. Mater. Adv., 2022, 3(1): 658 https://doi.org/10.1039/D1MA00849H
171
C. Hebig J., Kühn I., Flohre J., Kirchartz T.. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett., 2016, 1(1): 309 https://doi.org/10.1021/acsenergylett.6b00170
172
K. Noel N., D. Stranks S., Abate A., Wehrenfennig C., Guarnera S., A. Haghighirad A., Sadhanala A., E. Eperon G., K. Pathak S., B. Johnston M., Petrozza A., M. Herz L., J. Snaith H.. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci., 2014, 7(9): 3061 https://doi.org/10.1039/C4EE01076K
173
Ge S., Wang Y., Xiang Z., Cui Y.. Reset voltage-dependent multilevel resistive switching behavior in CsPb1–xBixI3 perovskite-based memory device. ACS Appl. Mater. Interfaces, 2018, 10(29): 24620 https://doi.org/10.1021/acsami.8b07079
174
Ruan W., Hu Y., Xu F., Zhang S.. Resistive switching behavior of organic-metallic halide perovskites CH3NH3Pb1−xBixBr3. Org. Electron., 2019, 70: 252 https://doi.org/10.1016/j.orgel.2019.04.031
175
Lv F., Gao C., A. Zhou H., Zhang P., Mi K., Liu X.. Nonvolatile bipolar resistive switching behavior in the perovskite-like (CH3NH3)2FeCl4. ACS Appl. Mater. Interfaces, 2016, 8(29): 18985 https://doi.org/10.1021/acsami.6b04464
176
M. Yang J., S. Choi E., Y. Kim S., H. Kim J., H. Park J., G. Park N.. Perovskite-related (CH3NH3)3-Sb2Br9 for forming-free memristor and low-energy-consuming neuromorphic computing. Nanoscale, 2019, 11(13): 6453 https://doi.org/10.1039/C8NR09918A
177
Zeng F., Guo Y., Hu W., Tan Y., Zhang X., Feng J., Tang X.. Opportunity of the lead-free all-inorganic Cs3Cu2I5 perovskite film for memristor and neuromorphic computing applications. ACS Appl. Mater. Interfaces, 2020, 12(20): 23094 https://doi.org/10.1021/acsami.0c03106
178
Wang R., Chen P., Hao D., Zhang J., Shi Q., Liu D., Li L., Xiong L., Zhou J., Huang J.. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces, 2021, 13(36): 43144 https://doi.org/10.1021/acsami.1c08424
179
Lao J., Xu W., Jiang C., Zhong N., Tian B., Lin H., Luo C., Travas-Sejdic J., Peng H., G. Duan C.. An air-stable artificial synapse based on a lead-free double perovskite Cs2AgBiBr6 film for neuromorphic computing. J. Mater. Chem. C, 2021, 9(17): 5706 https://doi.org/10.1039/D1TC00655J
180
Wu C., Zhang Q., Liu Y., Luo W., Guo X., Huang Z., Ting H., Sun W., Zhong X., Wei S., Wang S., Chen Z., Xiao L.. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. (Weinh.), 2018, 5(3): 1700759 https://doi.org/10.1002/advs.201700759
181
F. Cheng X., H. Qian W., Wang J., Yu C., H. He J., Li H., F. Xu Q., Y. Chen D., J. Li N., M. Lu J.. Environmentally robust memristor enabled by lead-free double perovskite for high-performance information storage. Small, 2019, 15(49): 1905731 https://doi.org/10.1002/smll.201905731
Guo Z., Xiong R., Zhu Y., Wang Z., Zhou J., Liu Y., Luo D., Wang Y., Wang H.. High-performance and humidity robust multilevel lead-free all-inorganic Cs3Cu2Br5 perovskite-based memristors. Appl. Phys. Lett., 2023, 122(5): 053502 https://doi.org/10.1063/5.0129311
184
H. Qian W., F. Cheng X., Zhou J., H. He J., Li H., F. Xu Q., J. Li N., Y. Chen D., G. Yao Z., M. Lu J.. Lead-free perovskite MASnBr3-based memristor for quaternary information storage. InfoMat, 2020, 2(4): 743 https://doi.org/10.1002/inf2.12066
185
Ren Y., Bu X., Wang M., Gong Y., Wang J., Yang Y., Li G., Zhang M., Zhou Y., T. Han S.. Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity. Nat. Commun., 2022, 13(1): 5585 https://doi.org/10.1038/s41467-022-33393-8
186
Guan X., Lei Z., Yu X., H. Lin C., K. Huang J., Y. Huang C., Hu L., Li F., Vinu A., Yi J., Wu T.. Low-dimensional metal-halide perovskites as high-performance materials for memory applications. Small, 2022, 18(38): 2203311 https://doi.org/10.1002/smll.202203311
187
Das U., K. Sarkar P., Das D., Paul B., Roy A.. Influence of nanoscale charge trapping layer on the memory and synaptic characteristics of a novel rubidium lead chloride quantum dot based memristor. Adv. Electron. Mater., 2022, 8(5): 2101015 https://doi.org/10.1002/aelm.202101015
188
Gonzales C., Guerrero A., Bisquert J.. Spectral properties of the dynamic state transition in metal halide perovskite-based memristor exhibiting negative capacitance. Appl. Phys. Lett., 2021, 118(7): 073501 https://doi.org/10.1063/5.0037916
189
Batool S., Idrees M., R. Zhang S., T. Han S., Zhou Y.. Novel charm of 2D materials engineering in memristor: When electronics encounter layered morphology. Nanoscale Horiz., 2022, 7(5): 480 https://doi.org/10.1039/D2NH00031H
190
Di J., Lin Z., Su J., Wang J., Zhang J., Liu S., Chang J., Hao Y.. Two-dimensional (C6H5C2H4NH3)2-PbI4 perovskite single crystal resistive switching memory devices. IEEE Electron Device Lett., 2021, 42(3): 327 https://doi.org/10.1109/LED.2021.3053009
191
Liu J., Chen K., A. Khan S., Shabbir B., Zhang Y., Khan Q., Bao Q.. Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology, 2020, 31(15): 152002 https://doi.org/10.1088/1361-6528/ab5a19
192
J. Kim S., H. Lee T., M. Yang J., W. Yang J., J. Lee Y., J. Choi M., A. Lee S., M. Suh J., J. Kwak K., H. Baek J., H. Im I., E. Lee D., Y. Kim J., Kim J., S. Han J., Y. Kim S., Lee D., G. Park N., W. Jang H.. Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today, 2022, 52: 19 https://doi.org/10.1016/j.mattod.2021.10.035
193
Thrithamarassery Gangadharan D., Ma D.. Searching for stability at lower dimensions: Current trends and future prospects of layered perovskite solar cells. Energy Environ. Sci., 2019, 12(10): 2860 https://doi.org/10.1039/C9EE01591D
194
Tian H., Zhao L., Wang X., W. Yeh Y., Yao N., P. Rand B., L. Ren T.. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano, 2017, 11(12): 12247 https://doi.org/10.1021/acsnano.7b05726
195
Kumar M., Patel M., Y. Park D., S. Kim H., S. Jeong M., Kim J.. Switchable two-terminal transparent optoelectronic devices based on 2D perovskite. Adv. Electron. Mater., 2019, 5(2): 1800662 https://doi.org/10.1002/aelm.201800662
196
M. Yang J.G. Kim S.Y. Seo J.Cuhadar C.Y. Son D. Lee D.G. Park N., 1D hexagonal HC(NH2)2-PbI3 for multilevel resistive switching nonvolatile memory, Adv. Electron. Mater. 4(9), 1800190 (2018)
197
Poddar S., Zhang Y., Gu L., Zhang D., Zhang Q., Yan S., Kam M., Zhang S., Song Z., Hu W., Liao L., Fan Z.. Down-scalable and ultra-fast memristors with ultra-high density three-dimensional arrays of perovskite quantum wires. Nano Lett., 2021, 21(12): 5036 https://doi.org/10.1021/acs.nanolett.1c00834
198
Zhou G., Kuang D., Wang G., He X., Xu C., Dong J., Dai Z., Xu G., Lu D., Guo P., Sun B., Song Q.. PbI3-ion abnormal migration in CH3NH3PbIxCl3−x ultralong single nanowire for resistive switching memories. Mater. Charact., 2023, 199: 112762 https://doi.org/10.1016/j.matchar.2023.112762
199
Chen Z., Yu Y., Jin L., Li Y., Li Q., Li T., Zhang Y., Dai H., Yao J.. Artificial synapses with photoelectric plasticity and memory behaviors based on charge trapping memristive system. Mater. Des., 2020, 188: 108415 https://doi.org/10.1016/j.matdes.2019.108415
200
Gong Y., Wang Y., Li R., Q. Yang J., Lv Z., Xing X., Liao Q., Wang J., Chen J., Zhou Y., T. Han S.. Tailoring synaptic plasticity in a perovskite QD-based asymmetric memristor. J. Mater. Chem. C, 2020, 8(9): 2985 https://doi.org/10.1039/C9TC06565B
201
V. Nenashev G.N. Aleshin A.P. Shcherbakov I.N. Petrov V., Effect of temperature variations on the behavior of a two-terminal organic−inorganic halide perovskite rewritable memristor for neuromorphic operations, Solid State Commun. 348−349, 114768 (2022)
202
K. Su T., K. Cheng W., Y. Chen C., C. Wang W., T. Chuang Y., H. Tan G., C. Lin H., H. Hou C., M. Liu C., C. Chang Y., J. Shyue J., C. Wu K., W. Lin H.. Room-temperature fabricated multilevel nonvolatile lead-free cesium halide memristors for reconfigurable in-memory computing. ACS Nano, 2022, 16(8): 12979 https://doi.org/10.1021/acsnano.2c05436
203
A. John R., Demirag Y., Shynkarenko Y., Berezovska Y., Ohannessian N., Payvand M., Zeng P., I. Bodnarchuk M., Krumeich F., Kara G., Shorubalko I., V. Nair M., A. Cooke G., Lippert T., Indiveri G., V. Kovalenko M.. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun., 2022, 13(1): 2074 https://doi.org/10.1038/s41467-022-29727-1
204
Wang Y., Xu N., Yuan Y., Zhang W., Huang Q., Tang X., Qi F.. Achieving adjustable digital-to-analog conversion in memristors with embedded Cs2AgSbBr6 nanoparticles. Nanoscale, 2023, 15(16): 7344 https://doi.org/10.1039/D2NR06370K
205
Zhang Z.Yang D.Li H.Li C.Wang Z. Sun L.Yang H., 2d materials and van der waals heterojunctions for neuromorphic computing, Neuromorph. Comput. Eng. 2(3), 032004 (2022)
206
Zhou Z., Yang F., Wang S., Wang L., Wang X., Wang C., Xie Y., Liu Q.. Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204 https://doi.org/10.1007/s11467-021-1114-5
207
B. Zhu Q.Li B.D. Yang D.Liu C.Feng S. L. Chen M.Sun Y.N. Tian Y.Su X.M. Wang X. Qiu S.W. Li Q.M. Li X.B. Zeng H.M. Cheng H. M. Sun D., A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems, Nat. Commun. 12(1), 1798 (2021)
208
Yin L., Huang W., Xiao R., Peng W., Zhu Y., Zhang Y., Pi X., Yang D.. Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett., 2020, 20(5): 3378 https://doi.org/10.1021/acs.nanolett.0c00298
209
Wu Y., Wei Y., Huang Y., Cao F., Yu D., Li X., Zeng H.. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res., 2017, 10(5): 1584 https://doi.org/10.1007/s12274-016-1288-2
210
Wang Y., Lv Z., Liao Q., Shan H., Chen J., Zhou Y., Zhou L., Chen X., L. Roy V., Wang Z., Xu Z., J. Zeng Y., T. Han S.. Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv. Mater., 2018, 30(28): 1800327 https://doi.org/10.1002/adma.201800327
211
Pradhan B., Das S., Li J., Chowdhury F., Cherusseri J., Pandey D., Dev D., Krishnaprasad A., Barrios E., Towers A., Gesquiere A., Tetard L., Roy T., Thomas J.. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv., 2020, 6(7): eaay5225 https://doi.org/10.1126/sciadv.aay5225
212
Cheng X., Han Y., B. Cui B.. Fabrication strategies and optoelectronic applications of perovskite heterostructures. Adv. Opt. Mater., 2022, 10(5): 2102224 https://doi.org/10.1002/adom.202102224
213
Liu D., Yu H., Chai Y.. Low-power computing with neuromorphic engineering. Adv. Intell. Syst., 2021, 3(2): 2000150 https://doi.org/10.1002/aisy.202000150
Zhao X., Wang Z., Li W., Sun S., Xu H., Zhou P., Xu J., Lin Y., Liu Y.. Photoassisted electroforming method for reliable low-power organic−inorganic perovskite memristors. Adv. Funct. Mater., 2020, 30(17): 1910151 https://doi.org/10.1002/adfm.201910151
217
Lin G., Lin Y., Cui R., Huang H., Guo X., Li C., Dong J., Guo X., Sun B.. An organic−inorganic hybrid perovskite logic gate for better computing. J. Mater. Chem. C, 2015, 3(41): 10793 https://doi.org/10.1039/C5TC02270C
218
Xing J., Zhao C., Zou Y., Kong W., Yu Z., Shan Y., Dong Q., Zhou D., Yu W., Guo C.. Modulating the optical and electrical properties of MAPbBr3 single crystals via voltage regulation engineering and application in memristors. Light Sci. Appl., 2020, 9(1): 111 https://doi.org/10.1038/s41377-020-00349-w
219
Ke S., Jiang L., Zhao Y., Xiao Y., Jiang B., Cheng G., Wu F., Cao G., Peng Z., Zhu M., Ye C.. Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508 https://doi.org/10.1007/s11467-022-1173-2
220
S. Sokolov A., Abbas H., Abbas Y., Choi C.. Towards engineering in memristors for emerging memory and neuromorphic computing: A review. J. Semicond., 2021, 42(1): 013101 https://doi.org/10.1088/1674-4926/42/1/013101
221
J. Huang T.. Imitating the brain with neurocomputer a new way towards artificial general intelligence. Inter. J. Autom. Comput., 2017, 14(5): 520 https://doi.org/10.1007/s11633-017-1082-y
222
Zahoor F., Z. Azni Zulkifli T., A. Khanday F.. Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications. Nanoscale Res. Lett., 2020, 15(1): 90 https://doi.org/10.1186/s11671-020-03299-9
223
Chen F., Zhou Y., Zhu Y., Zhu R., Guan P., Fan J., Zhou L., Valanoor N., Von Wegner F., Saribatir E., Birznieks I., Wan T., Chu D.. Recent progress in artificial synaptic devices: Materials, processing and applications. J. Mater. Chem. C, 2021, 9(27): 8372 https://doi.org/10.1039/D1TC01211H
224
J. Kwak K., H. Baek J., E. Lee D., H. Im I., Kim J., J. Kim S., J. Lee Y., Y. Kim J., W. Jang H.. Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing. Nano Lett., 2022, 22(14): 6010 https://doi.org/10.1021/acs.nanolett.2c01272
Huang W., Hang P., Wang Y., Wang K., Han S., Chen Z., Peng W., Zhu Y., Xu M., Zhang Y., Fang Y., Yu X., Yang D., Pi X.. Zero-power optoelectronic synaptic devices. Nano Energy, 2020, 73: 104790 https://doi.org/10.1016/j.nanoen.2020.104790
227
A. John R., Milozzi A., Tsarev S., Brönnimann R., C. Boehme S., Wu E., Shorubalko I., V. Kovalenko M., Ielmini D.. Ionic-electronic halide perovskite memdiodes enabling neuromorphic computing with a second-order complexity. Sci. Adv., 2022, 8(51): eade0072 https://doi.org/10.1126/sciadv.ade0072
228
A. Bessonov A., N. Kirikova M., I. Petukhov D., Allen M., Ryhanen T., J. Bailey M.. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater., 2015, 14(2): 199 https://doi.org/10.1038/nmat4135
229
Lee Y., W. Lee T.. Organic synapses for neuromorphic electronics: From brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res., 2019, 52(4): 964 https://doi.org/10.1021/acs.accounts.8b00553
230
Yan X., Han X., Fang Z., Zhao Z., Zhang Z., Sun J., Shao Y., Zhang Y., Wang L., Sun S., Guo Z., Jia X., Zhang Y., Guan Z., Shi T.. Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing. Front. Phys., 2023, 18(6): 63301 https://doi.org/10.1007/s11467-023-1308-0
231
Chen Q., Zhang Y., Liu S., Han T., Chen X., Xu Y., Meng Z., Zhang G., Zheng X., Zhao J., Cao G., Liu G.. Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Adv. Intell. Syst., 2020, 2(9): 2070092 https://doi.org/10.1002/aisy.202070092
232
Yang X.Xiong Z.Chen Y.Ren Y.Zhou L. Li H.Zhou Y. Pan F.T. Han S., A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays, Nano Energy 78, 105246 (2020)
233
A. John R., Shah N., K. Vishwanath S., E. Ng S., Febriansyah B., Jagadeeswararao M., H. Chang C., Basu A., Mathews N.. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat. Commun., 2021, 12(1): 3681 https://doi.org/10.1038/s41467-021-24057-0
234
J. Gogoi H., Bajpai K., T. Mallajosyula A., Solanki A.. Advances in flexible memristors with hybrid perovskites. J. Phys. Chem. Lett., 2021, 12(36): 8798 https://doi.org/10.1021/acs.jpclett.1c02105
Song K., Chen B., Lin X., Yang H., Liu Y., Liu Y., Li H., Chen Z.. Thermal enhanced resistive switching performance of ⟨ 100⟩-oriented perovskite [(TZ-H)2(PbBr4)]n with high working temperature: A triazolium/(PbBr4)n2n− interfacial interaction insight. Adv. Electron. Mater., 2022, 8(11): 2200537 https://doi.org/10.1002/aelm.202200537
237
Soosaimanickam A.J. Rodríguez-Cantó P.P. Martínez-Pastor J.Abargues R., Nanostructured, functional, and flexible materials for energy conversion and storage systems, edited by A. Pandikumar and P. Rameshkumar, Elsevier, 2020, pp 157−228
238
Sun J., Li F., Yuan J., Ma W.. Advances in metal halide perovskite film preparation: The role of anti-solvent treatment. Small Methods, 2021, 5(5): 2100046 https://doi.org/10.1002/smtd.202100046
239
Roy P.Kumar Sinha N.Tiwari S.Khare A., A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status, Sol. Energy 198, 665 (2020)
240
Gil-Escrig L., Momblona C., G. La-Placa M., P. Boix P., Sessolo M., J. Bolink H.. Vacuum deposited triple-cation mixed-halide perovskite solar cells. Adv. Energy Mater., 2018, 8(14): 1703506 https://doi.org/10.1002/aenm.201703506
241
Xie S., Osherov A., Bulović V.. All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes. APL Mater., 2020, 8(5): 051113 https://doi.org/10.1063/1.5144103
242
Zhang N., Sun W., P. Rodrigues S., Wang K., Gu Z., Wang S., Cai W., Xiao S., Song Q.. Highly reproducible organometallic halide perovskite microdevices based on top-down lithography. Adv. Mater., 2017, 29(15): 1606205 https://doi.org/10.1002/adma.201606205
243
Parveen S., T. Manamel L., Mukherjee A., Sagar S., C. Das B.. Analog memristor of lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals as solid-state electronic synapse for neuromorphic computing. Adv. Mater. Interfaces, 2022, 9(30): 2200562 https://doi.org/10.1002/admi.202200562