Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2013, Vol. 7 Issue (3): 245-263   https://doi.org/10.1007/s11709-013-0215-9
  RESEARCH ARTICLE 本期目录
Modeling of semi-rigid beam-to-column steel joints under extreme loading
Modeling of semi-rigid beam-to-column steel joints under extreme loading
C FANG(), B A IZZUDDIN, A Y ELGHAZOULI, D A NETHERCOT
Department of Civil & Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom
 全文: PDF(636 KB)   HTML
Abstract

Joints play an important role in providing ductility for steel-composite structures subject to extreme loading conditions, such as blast, fire and impact. Due to sound energy dissipation capability and fabrication efficiency, semi-rigid joints have increasingly received attention during the last decade. This paper presents a component approach for modeling semi-rigid beam-to-column joints based on Eurocode3, where the post-elastic response, including component strain hardening and ultimate rotational capacity, is also considered. Failure criteria are defined based on the ultimate deformation capacity of components and bolt-rows. The model enables a direct integration of joint response into global frame models with the consideration of axial deformability, such that the interaction between bending moment and axial force within the joints can be realistically captured. In addition, elevated temperature can be considered in the joint model via the degradation of the component response. Through comparisons with available test data, the joint model is shown to have good accuracy, and the failure criteria are found to be reliable yet conservative. The strain hardening response of components is shown to have significant influence on the ultimate bending capacity of the joints, while neglecting it usually leads to a conservative prediction.

Key wordssemi-rigid joint    component method    ductility    elevated temperature
收稿日期: 2013-03-15      出版日期: 2013-09-05
Corresponding Author(s): FANG C,Email:c.fang@imperial.ac.uk   
 引用本文:   
. Modeling of semi-rigid beam-to-column steel joints under extreme loading[J]. Frontiers of Structural and Civil Engineering, 2013, 7(3): 245-263.
C FANG, B A IZZUDDIN, A Y ELGHAZOULI, D A NETHERCOT. Modeling of semi-rigid beam-to-column steel joints under extreme loading. Front Struc Civil Eng, 2013, 7(3): 245-263.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-013-0215-9
https://academic.hep.com.cn/fsce/CN/Y2013/V7/I3/245
Fig.1  
Fig.2  
component library:(1) column web panel in shear;(2) column web in transverse compression;(3) column web in transverse tension; (4) column flange in bending; (5) column web in bending; (6) end-plate in bending; (7) angle/cleat in bending; (8) angle/cleat/fin plate in tension; (9) angle/cleat/fin plate in compression; (10) angle/cleat in bearing; (11) beam flange/web in compression; (12) beam web in tension; (13) bolts in tension; (14) bolts in shear; (15) bolts in bearing.
zonesflush end-plate jointtop and bottom seat cleat jointweb cleat jointfin plate joint
tension zone(3), (4), (6), (12), (13)(3), (4), (7), (8), (10), (13), (14), (15)(3), (4), (7), (8), (10), (12), (13), (14), (15)(3), (8), (10), (12), (14), (15)
compressive zone(2), (11)(2), (9), (10), (14), (15)(2), (9), (10), (14), (15)(2), (9), (10), (14), (15)
shear zone(1)(1)(1)(1)
Tab.1  
Fig.3  
Fig.4  
Fig.5  
componentsbi-linear approachtri-linear approach
Sim?es da Silva et al.[19]Lima et al.[20]Ren and Crisinel [21]Savio et al. [22]Jabriet al. [23]Ramli-Sulong et al. [24]
plastic ì1Ultimate ì2
column web in shear4.6%1.76-7%6%50%21.7%ì1 = 5%ì2 = 1%ì1 = 5%ì2 = 1%
column web in compression2.3%3.07-9.28%30%13%
column web in tension0.1-1.7%0.25-15%30%13%
column flange in bending1.3%0.13-15%20%8.7%
endplate in bending-0.18-1.84%10%4.3%
beam web in tension-2.05-3.65%--
beam flange/web in compression-0.44-4.89%--
bolt in tension-0.49-8%60%26.1%
Tab.2  
Fig.6  
Fig.7  
ductility indexcomponentelasticresistanceelasticstiffnesslimit deformation (df/dy)
high ductilitycolumn web in shearFR,cws=0.9fy,wcAvc3Kcws=E0.38Avcβ.zinfinite
column web in tensionFR,cwt=ωbeff,t,wctwcfy,wcKcwt=E0.7beff,t,wctwcdcinfinite
end-plate in bendingequivalent T-stub modelKcfb=E0.85lefftfc3m3infinite
column flange in bendingequivalent T-stub modelKcfb=E0.85lefftfc3m3infinite
angle in bendingequivalent T-stub modelKab=E0.85leff,ata3ma3infinite
limited ductilityangle plate in bearingFR,ab=k1abfudtaKabr=24nbkbktdfu15
beam web plate in bearingFR,bwbr=k1abfudtbwKbwbr=24nbkbktdfu15
column web in compressionFR,cwc=ωkwcρbe,ff,c,wctwcfy,wcKcwc=E0.7beff,c,wctwcdc5
brittle failurebolts in tensionFR,bt=2k2fubAsKbt=1.6EAs/Lb1
bolts in shearFR,bs=nsαvfubAsKbs=16nbd2fubdM161
beam flange/web in compressionFR,bfwc=Mc,Rdz1
Tab.3  
temperature/°Cstrength SRFstiffness SRF
20°C1.0001.000
100°C1.0001.000
200°C0.9710.807
300°C0.9410.613
400°C0.9120.420
500°C0.7210.280
600°C0.3600.100
700°C0.1600.035
800°C0.1100.020
900°C0.0600.010
1000°C0.0400.005
1100°C0.0200.0025
1200°C0.0000.000
Tab.4  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
1 Lawson R M. Behaviour of steel beam-to-column connections in fire. Structural Engineer , 1990, 68(14): 263-271
2 Leston-Jones L C, Burgess I W, Lennon T, Plank R J. Elevated-temperature moment-rotation tests on steelwork connections. Proceedings of the Institution of Civil Engineers. Structures and Buildings , 1997, 122(4): 410-419
doi: 10.1680/istbu.1997.29830
3 Wang Y C, Dai X H, Bailey C G. An experimental study of relative structural fire behaviour and robustness of different types of steel joint in restrained steel frames. Journal of Constructional Steel Research , 2011, 67(7): 1149-1163
doi: 10.1016/j.jcsr.2011.02.008
4 Yu H X, Burgess I W, Davison J B, Plank R J. Tying Capacity of Web Cleat Connections in Fire,Part 1: Test and Finite Element Simulation. Engineering Structures , 2009, 31(3): 651-663
doi: 10.1016/j.engstruct.2008.11.005
5 Al-Jabri K S, Burgess I W, Lennon T, Plank R J. Moment–rotation–temperature curves forsemi-rigid joints. Journal of Constructional Steel Research , 2005, 61(3): 281-303
doi: 10.1016/j.jcsr.2004.09.001
6 El-Rimawi J A, Burgess I W, Plank R J. The influence of connection stiffness on the behaviour of steel beams in fire. Journal of Constructional Steel Research , 1997, 43(1-3): 1-15
doi: 10.1016/S0143-974X(97)00047-3
7 Al-Jabri K S, Seibi A, Karrech A. Modelling of unstiffened flush end-plate bolted connections in fire. Journal of Constructional Steel Research , 2006, 62(1-2): 151-159
doi: 10.1016/j.jcsr.2005.04.016
8 Liu T C H. Finite element modelling of behaviour of steel beams andconnections in fire. Journal of Constructional Steel Research , 1996, 36(3): 181-199
doi: 10.1016/0143-974X(95)00016-O
9 Qian Z H, Tan K H, Burgess I W. Numerical and analytical investigations of steel beam-to-column joints at elevated temperatures. Journal of Constructional Steel Research , 2009, 65(5): 1043-1054
doi: 10.1016/j.jcsr.2008.11.010
10 Dai X H, Wang Y C, Bailey C G. Numerical modelling of structural fire behaviour of restrained steel beam–column assemblies using typical joint types. Engineering Structures , 2010, 32(8): 2337-2351
doi: 10.1016/j.engstruct.2010.04.009
11 Kalogeropoulos A, Drosopoulos G A, Stavroulakis G E. Thermal–stress analysis of a three-dimensional end-plate steel joint. Construction & Building Materials , 2012, 29: 619-626
doi: 10.1016/j.conbuildmat.2011.11.012
12 EN 1993–1-8:2005. Eurocode 3: Design of Steel Structures – Part 1–8: Design of joints. European Committee for Standardization, Brussels, Belgium
13 Block F M, Burgess I W, Davison J B, Plank R J. The development of a component-based connection element for endplate connections in fire. Fire Safety Journal , 2007, 42(6-7): 498-506
doi: 10.1016/j.firesaf.2007.01.008
14 Yu H X, Burgess I W, Davison J B, Plank R J. Tying capacity of web cleat connections in fire, Part 2: Development of component-based model. Engineering Structures , 2009, 31(3): 697-708
doi: 10.1016/j.engstruct.2008.11.006
15 Izzuddin B. Nonlinear dynamic analysis of framed structures. Dissertation for the Doctoral Degree . London: University of London, 1991
16 Vlassis A G. Progressive collapse assessment of tall buildings. Dissertation for the Doctoral Degree . London: Imperial College London, 2007
17 Spyrou S, Davison J B, Burgess I W, Plank R J. Experimental and analytical investigation of the ‘compression zone’ component within a steel joint at elevated temperatures. Journal of Constructional Steel Research , 2004, 60(6): 841-865
doi: 10.1016/j.jcsr.2003.10.005
18 Spyrou S, Davison J B, Burgess I W, Plank R J. Experimental and analytical investigation of the‘tension zone’ component within a steel joint at elevated temperatures. Journal of Constructional Steel Research , 2004, 60(6): 867-896
doi: 10.1016/j.jcsr.2003.10.006
19 Sim?es da Silva L, Santiago A, Vila R. Post-limit stiffness and ductility of end-plate beam-to-column steel joints. Computers & Structures , 2002, 80(5-6): 515-531
doi: 10.1016/S0045-7949(02)00014-7
20 Lima L R O, da Vellasco P C G, da Silva J G S, Borges L A C, da Silva L A P S. Post-limit stiffness prediction of semi-rigid joints using genetic algorithms. Latin American Journal of Solids and Structures , 2005, 2: 305-320
21 Ren P, Crisinel M. Prediction method for moment–rotation behaviour of composite beam to steel column joint. Joints in steel structures III: Behaviour, strength and design. In: Proceedings of 3rd international workshop on connections in steel structures . Trento University, Italy, 1995, 33-46 .
22 Del Savio A A, Nethercot D A, Vellasco P C G S, Andrade S A L, Martha L F. Generalised component-based model for beam-to-column joints including axial versus moment interaction. Journal of Constructional Steel Research , 2009, 65(8-9): 1876-1895
doi: 10.1016/j.jcsr.2009.02.011
23 Al-Jabri K S, Burgess I W, Plank R J. Prediction of the degradation of Joint characteristics at elevated temperature. Journal of Constructional Steel Research , 2004, 60(3-5): 771-781
doi: 10.1016/S0143-974X(03)00142-1
24 Ramli-Sulong N H, Elghazouli A Y, Izzuddin B A. Behaviour and design of beam-to-column connections under fire conditions. Fire Safety Journal , 2007, 42(6-7): 437-451
doi: 10.1016/j.firesaf.2006.09.003
25 Kuhlmann U, Davison J B, Kattner M. Structural systems and rotation capacity. In: Proceeding of COST Conference on Control of the Semi-rigid Behaviour of Civil Engineering Structural Joints . Liege, Belgium, 1998, 167-176
26 Fang C, Izzuddin B A, Elghazouli A Y, Nethercot D A. Robustness of steel-composite building structures subject to localised fire. Fire Safety Journal , 2011, 46(6): 348-363
doi: 10.1016/j.firesaf.2011.06.001
27 Fang C, Izzuddin B A, Obiala R, Elghazouli A Y, Nethercot D A. Robustness of multi-storey car parks under vehicle fire. Journal of Constructional Steel Research , 2012, 75: 72-84
doi: 10.1016/j.jcsr.2012.03.004
28 Sarraj M. The behaviour of steel fin plate joints in fire. Dissertation for the Doctoral Degree . Sheffield: The University of Sheffield, 2007
29 Jarrett N D. Axial Tests on Beam/Column Joints. BRE Client Report CR 55/90, Building Research Establishment, Garston, Watford, UK , 1990
30 Owens G W, Moore D B. The Robustness of Simple Joints. Structural Engineer , 1992, 70(3): 37-46
31 Yu H X, Burgess I W, Davison J B, Plank R J. Experimental and numerical investigations of the behaviour of flush endplate connections at elevated temperatures. Journal of Structural Engineering , 2011, 137(1): 80-87
doi: 10.1061/(ASCE)ST.1943-541X.0000277
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed