Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2015, Vol. 9 Issue (4): 466-477   https://doi.org/10.1007/s11709-015-0300-3
  本期目录
An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memory effect in shape memory alloys
S. HASHEMI,H. AHMADIAN,S. MOHAMMADI()
High Performance Computing Laboratory (HPC Lab), School of Civil Engineering, University of Tehran, Tehran 1417613131, Iran
 全文: PDF(3119 KB)   HTML
Abstract

Thermo-mechanical coupling in shape memory alloys is a very complicated phenomenon. The heat generation/absorption during forward/reverse transformation can lead to temperature-dependent variation of its mechanical behavior in the forms of superelasticity and shape memory effect. However, unlike the usual assumption, slow loading rate cannot guarantee an isothermal process. A two-dimensional thermo-mechanically coupled algorithm is proposed based on the original model of Lagoudas to efficiently model both superelasticity and shape memory effects and the influence of various strain rates, aspect ratios and boundary conditions. To implement the coupled model into a finite element code, a numerical staggered algorithm is employed. A number of simulations are performed to verify the proposed approach with available experimental and numerical data and to assess its efficiency in solving complex SMA problems.

Key wordsshape memory alloy    thermo-mechanical coupling    superplasticity    shape memory effect
收稿日期: 2015-01-14      出版日期: 2015-11-26
Corresponding Author(s): S. MOHAMMADI   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2015, 9(4): 466-477.
S. HASHEMI,H. AHMADIAN,S. MOHAMMADI. An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memory effect in shape memory alloys. Front. Struct. Civ. Eng., 2015, 9(4): 466-477.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-015-0300-3
https://academic.hep.com.cn/fsce/CN/Y2015/V9/I4/466
material parameters value material parameters value
EA 16.5 × 109 Pa a A = a M 22 × 10 6   1 / K
EM 16.5 × 109 Pa ρ C A = ρ C M 3.2 × 10 5   J / ( m 3 K )
v A = v M 0.3 s0 0.375 × 10 6   J / ( m 3 K )
TMs −30°C Hmax 0.3
TMf −31°C k 18   W / ( m K )
TAs 4°C hair 50   W / ( m K )
TAf 5°C hwater 300   W / ( m K )
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
material parameters value material parameters value
EA 55 × 109 Pa v A = v M 0.33
EM 46 × 109 Pa a A = a M 22 × 10 6   1 / K
TMs −28°C ρ C A = ρ C M 4.81 × 10 5   J / ( m 3 K )
TMf −43°C s0 0   J / ( m 3 K )
TAs −3°C Hmax 0.056
TAf 7°C k 18   W / ( m K )
Tab.2  
Fig.6  
Fig.7  
material parameters value material parameters value
EA 47 × 109 Pa v A = v M 0.3
EM 33 × 109 Pa a A = a M 22 × 10 6   1 / K
TMs −52°C ρ C A = ρ C M 6.5 × 10 5   J / ( m 3 K )
TMf −60°C s0 0   J / ( m 3 K )
TAs −30°C Hmax 0.075
TAf −20°C k 18   W / ( m K )
Tab.3  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
1 Shaw  J, Kyriakides  S. Thermomechanical aspects of NiTi. Journal of the Mechanics and Physics of Solids, 1995, 43(8): 1243–1281
2 Chang  B. Shaw, Iadicola M. Thermodynamics of shape memory alloy wire: Modeling, experiments, and application. Continuum Mechanics and Thermodynamics, 2006, 18(1−2): 83–118
3 Morin  C, Moumni  Z. Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling. International Journal of Plasticity, 2011, 27: 1959–1980
4 Desroches  R, McCormick  J, Delemont  M. Cyclic properties of superelastic shape memory alloy wires and bars. Journal of Structural Engineering, 2004, 130(1): 38–46
5 Mirzaeifar  R, Desroches  R, Yavari  A. Analysis of the rate-dependent coupled thermo-mechanical response of shape memory alloy bars and wires in tension. Continuum Mechanics and Thermodynamics, 2011, 23: 363–385
6 Lagoudas  D C, Bo  Z, Qidwai  M A. A unified thermodynamic constitutive model for SMA and finite element analysis of active metal matrix composites. Mechanics of Composite Materials and Structures, 1996, 3: 153–179
7 Qidwai  M A, Lagoudas  D C. Numerical implementation of shape memory alloy thermomechanical constitutive model using return mapping algorithm. International Journal for Numerical Methods in Engineering, 2000, 47: 1123–1168
8 Lagoudas  D C. Shape Memory Alloys, Modeling and Engineering Applications. Springer, 2008
9 He  Y J, Sun  Q P. On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars. International Journal of Solids and Structures, 2011, 48: 1688–1695
10 Zhange  X H, Feng  P, He  Y J, Yu  T X, Sun  Q P. Experimental study on rate dependence of macroscopic domain and stress hysteresis in NiTi shape memory alloy strips. International Journal of Mechanical Sciences, 2010, 52: 1660–1670
11 Morin  C, Moumni  Z, Zaki  W. A constitutive model for shape memory alloys accounting for thermomechanical coupling. International Journal of Plasticity, 2011, 27: 748–767
12 Auricchio  F, Taylor  R L, Lubliner  J. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Computer Methods in Applied Mechanics and Engineering, 1997, 146(3−4): 281–312
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed