Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2015, Vol. 9 Issue (3): 323-340   https://doi.org/10.1007/s11709-015-0301-2
  本期目录
Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration of interface properties
Jun WU1,2,Xuemei LIU()
1. College of Urban Railway Transportation, Shanghai University of Engineering Science, Shanghai 201620, China
2. Department of Civil and Environmental Engineering, National University of Singapore, Singapore 119077, Singapore
3. School of Civil Engineering and Built Environment, Queensland University of Technology, Brisbane, QLD 4072, Australia
 全文: PDF(3401 KB)   HTML
Abstract

This paper presents a combined experimental and numerical study on the damage and performance of a soft-hard-soft (SHS) multi-layer cement based composite subjected to blast loading which can be used for protective structures and infrastructures to resist extreme loadings, and the composite consists of three layers of construction materials including asphalt concrete (AC) on the top, high strength concrete (HSC) in the middle, and engineered cementitious composites (ECC) at the bottom. To better characterize the material properties under dynamic loading, interface properties of the composite were investigated through direct shear test and also used to validate the interface model. Strain rate effects of the asphalt concrete were also studied and both compressive and tensile dynamic increase factor (DIF) curves were improved based on split Hopkinson pressure bar (SHPB) test. A full-scale field blast test investigated the blast behavior of the composite materials. The numerical model was established by taking into account the strain rate effect of all concrete materials. Furthermore, the interface properties were also considered into the model. The numerical simulation using nonlinear finite element software LS-DYNA agrees closely with the experimental data. Both the numerical and field blast test indicated that the SHS composite exhibited high resistance against blast loading.

Key wordshigh strength concrete (SHS)    engineered cementitious composite    interface    blast test    strain rate effect
收稿日期: 2015-07-13      出版日期: 2015-10-09
Corresponding Author(s): Xuemei LIU   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2015, 9(3): 323-340.
Jun WU,Xuemei LIU. Performance of soft-hard-soft (SHS) cement based composite subjected to blast loading with consideration of interface properties. Front. Struct. Civ. Eng., 2015, 9(3): 323-340.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-015-0301-2
https://academic.hep.com.cn/fsce/CN/Y2015/V9/I3/323
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
parameters unit value
KIC MPa·mm 1/2 12.2
υ 0.35
E MPa 598
Gf MPa·mm 0.221
wc mm 40
Gf/wc 0.00554
ft MPa 0.7
b2 0.2
Tab.1  
Fig.7  
Fig.8  
Fig.9  
parameters units HSC ECC
Young’s modulus, E GPa 33 18
compressive strength, fc MPa 55 64
tensile strength, ft MPa 4.35 5
Poisson’s ratio, ν 0.2 0.22
density, ρ kg/m3 2400 2080
Tab.2  
Fig.10  
parameters units GST steel
Young’s modulus, E MPa 500 207000
yield stress, f y MPa 7.5 460
Poisson’s ratio, ν 0.3 0.3
density, ρ kg/m3 1030 7850
Tab.3  
Fig.11  
parameters units GST steel
Young’s modulus, E MPa 500 207000
yield stress, f y MPa 7.5 460
Poisson’s ratio, ν 0.3 0.3
density, ρ kg/m3 1030 7850
Tab.4  
Fig.12  
parameters units value
density, ρ kg/m3 2100
shear modulus, G MPa 13.8
Poisson’s ratio, ν 0.3
cohesion, c kPa 62
friction angle, φ o 26
Tab.5  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
parameters unit value
contact type TIEBREAK
friction coefficient for static 0.71
friction coefficient for dynamic 0.56
τ n MPa 0.05
τ s MPa 1.15
D mm 10
Tab.6  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
item field trial test numerical result deviation from field trial test
max. vertical acceleration /(m·s−2) 35,400 38,870 10%
Tab.7  
item field blast test/kPa numerical result/kPa deviation from field trial test
TPC1 Destroyed 13,393 sensor destroyed as pressure>>range
TPC2 273 267 2%
TPC3 200 241 20%
Tab.8  
1 Wu  J. Development of advanced pavement materials system for blast load. Dissertation for the Doctoral Degree. Singapore: National University of Singapore, 2012
2 Zhang  M H, Shim  V P W, Lu  G, Chew  C W. Resistance of high-strength concrete to projectile impact. International Journal of Impact Engineering, 2005, 31(7): 825–841
3 Zhang  M H, Sharif  M S H, Lu  G. Impact resistance of high strength fibre-reinforced concrete. Magaine of Concrete Research, 2007, 199–210
4 Dancygier  A N, Yankelevsky  D Z. High strength concrete response to hard projectile impact. International Journal of Impact Engineering, 1996, 18(6): 583–599
5 Li  V C, Maalej  M. Toughening in cement based composites-Part II: Fiber-reinforced cementitious composites. Journal of Cement and Concrete Composites., 1996, 18(4): 239–249
6 Li  V C, Mishra  D K, Naaman  A E, Wight  J K, LaFave  J M, Wu  H C, Inada  Y. On the shear behavior of engineered cementitious composites. Journal of Advanced Cement Based Materials, 1994, 1(3): 142–149
7 Koerner  R M. Designing with Geosynthetics. N J: Prentice-Hall Eaglewood, 1998
8 LSDYNA. LSDYNA Keyword User’s Manual: Livermore Software Technology Corporation (LSTC), 2007
9 Riedel  W, Kawai  N, Kondo  K. Numerical assessment for impact strength measurements in concrete materials. International Journal of Impact Engineering, 2009, 36(2): 283–293
10 Malvar  L J, Crawford  J E, Wesevich  J W, Simons  D. A plasticity concrete material model for DYNA3D. International Journal of Impact Engineering, 1997, 19(9−10): 847–873
11 Polanco-Loria  M, Hopperstad  O S, Borvik  T, Berstad  T. Numercial predictions of ballistic limit for concrete slabs using a modified version of the HJC concrete model. International Journal of Impact Engineering, 2008, 35(5): 290–303
12 Holmquist  T J, Johnson  G R, Cook  W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures. In: Proceedings of the 14th International Symposium on Ballistics. Quebec, Canada, 1993, 591–600
13 Chen  W F. Constitutive Equations for Engineering Materials. John Wiley & Sons, 1982
14 Park  D W, Martin  T, Lee  H S, Masad  E. Characterization of permanent deformation of an asphalt mixture using a mechanistic approach. KSCE Journal of Civil Engineering, 2005, 9(3): 213–218
15 Tang  W H, Ding  Y Q, Yuan  X Y. The HJC Model Parameters of an Asphalt Mixture. DYMAT 2009- 9th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading, 2009, 1419–1423
16 Malvar  L J, Crawford  J E, Wesevich  J W. A New Concrete Material Model for DYNA3D Release II: Shear Dilation and Directional Rate Enhancements. Defense Nuclear Agency: Alexandria, VA, USA, 1996
17 Karihaloo  B L, Nallathambi  P. Effective crack model for the determination of fracture toughness (Kice) of concrete. Engineering Fracture Mechanics, 1990, 35(4−5): 637–645
18 Tekalur  S A, Shukla  A, Sadd  M, Lee  K W. Mechanical characterization of a bituminous mix under quasi-static and high-strain rate loading. Construction & Building Materials, 2009, 23(5): 1795–1802
19 Magallanes  J M, Wu  Y, Malvar  L J, Crawford  J E. Recent improvements to release III of the K&C concrete model. In: Proceedings of the 11th International LSDYNA Users Conference. Detroit, USA, 2010, 37–48
20 Comite Euro-International du Beton. CEP-FIP Model Code 1990. Redwood Books, Trowbridge, Wiltshire, UK, 1993
21 Lee  S C. Finite element modeling of hybrid-fiber ECC targets subjected to impact and blast. Dissertation for the Doctoral Degree. Singapore: National University of Singapore, 2006
22 Maalej  M, Quek  S T, Zhang  J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact. Journal of Materials in Civil Engineering, 2005, 17(2): 143–152
23 Lee  K Z Z, Chang  N Y, Ko  H Y. Numerical simulation of geosynthetic-refinforced soil wall under seismic shaking. Geotextiles and Geomembranes, 2010, 28(4): 317–334
24 Wang  F, Lim  C H, Soh  T B. Explosive testing, numerical and analytical modelling of a modular blast wall system. In: Proceedings of the 3rd International Conference on Design and Analysis of Protective Structures. Singapore, 2010, 392–401
25 Hyde  D. ConWep-Application of TM5−855−1. Fundamentals of protective design for conventional weapons. Vicksburg, MS: Structural Mechanics Division, Structures Laboratory, USACE Waterways Experiment Station, 1992
26 Wu  J, Chew  S H. Field performance and numerical modelling of multi-layer pavement system subject to blast load. Construction & Building Materials, 2014, 52: 177–188
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed