Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2015, Vol. 9 Issue (4): 341-358   https://doi.org/10.1007/s11709-015-0302-1
  本期目录
An extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3) for free vibration analysis of cracked Reissner-Mindlin shells
M. H. NGUYEN-THOI1,2,L. Le-ANH1,2,V. Ho-HUU1,2,H. Dang-TRUNG1,2,T. NGUYEN-THOI1,2,*()
1. Division of Computational Mathematics and Engineering (CME), Institute for Computational Science (INCOS), Ton Duc Thang University, Hochiminh city, Vietnam
2. Faculty of Civil Engineering, Ton Duc Thang University, Hochiminh city, Vietnam
 全文: PDF(7996 KB)   HTML
Abstract

A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) was recently proposed and proven to be robust for free vibration analyses of Reissner-Mindlin shell. The method improves significantly the accuracy of the solution due to softening effect of the cell-based strain smoothing technique. In addition, due to using only three-node triangular elements generated automatically, the CS-FEM-DSG3 can be applied flexibly for arbitrary complicated geometric domains. However so far, the CS-FEM-DSG3 has been only developed for analyzing intact structures without possessing internal cracks. The paper hence tries to extend the CS-FEM-DSG3 for free vibration analysis of cracked Reissner-Mindlin shells by integrating the original CS-FEM-DSG3 with discontinuous and crack−tip singular enrichment functions of the extended finite element method (XFEM) to give a so-called extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3). The accuracy and reliability of the novel XCS-FEM-DSG3 for free vibration analysis of cracked Reissner-Mindlin shells are investigated through solving three numerical examples and comparing with commercial software ANSYS.

Key wordscracked Reissner-Mindlin shell    free vibration analysis    cell-based smoothed discrete shear gap method (CS-FEM-DSG3)    extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3)    smoothed finite element methods (SFEM)
收稿日期: 2015-01-28      出版日期: 2015-11-26
Corresponding Author(s): T. NGUYEN-THOI   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2015, 9(4): 341-358.
M. H. NGUYEN-THOI,L. Le-ANH,V. Ho-HUU,H. Dang-TRUNG,T. NGUYEN-THOI. An extended cell-based smoothed discrete shear gap method (XCS-FEM-DSG3) for free vibration analysis of cracked Reissner-Mindlin shells. Front. Struct. Civ. Eng., 2015, 9(4): 341-358.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-015-0302-1
https://academic.hep.com.cn/fsce/CN/Y2015/V9/I4/341
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
crack length/m methods & comparison natural frequency values
mode 1 mode 2 mode 3 mode 4 mode 5
l = 0.1 XCS-FEM-DSG3 249.26 277.92 411.24 488.39 568.60
ANSYS 244.10 272.54 401.60 474.27 556.95
relative error/% 2.07 1.94 2.34 2.89 2.05
l = 0.2 XCS-FEM-DSG3 247.85 271.55 406.21 466.53 566.92
ANSYS 242.37 267.97 396.79 453.44 555.08
relative error/% 2.21 1.32 2.32 2.81 2.09
l = 0.3 XCS-FEM-DSG3 240.81 253.83 398.18 438.11 556.27
ANSYS 234.81 246.18 389.12 427.74 543.40
relative error/% 2.49 3.01 2.28 2.37 2.31
l = 0.4 XCS-FEM-DSG3 221.91 224.20 387.53 414.70 454.11
ANSYS 215.89 216.56 379.10 406.20 439.79
relative error/% 2.71 3.41 2.18 2.05 3.15
l = 0.5 XCS-FEM-DSG3 191.08 192.29 373.29 395.25 397.38
ANSYS 184.26 186.56 365.01 386.79 389.47
relative error/% 3.57 2.98 2.22 2.14 1.99
Tab.1  
Fig.10  
methods & comparison mesh size natural frequency values
mode 1 mode 2 mode 3 mode 4 mode 5
XCS-FEM-DSG3 24×24 247.32 262.68 405.77 460.88 565.14
28×28 243.11 254.39 401.37 445.34 557.17
32×32 240.89 252.51 398.64 438.53 556.82
40×40 240.81 253.83 398.18 438.11 556.27
60×60 235.09 249.80 386.56 425.42 540.76
ANSYS 40×40 234.81 246.18 389.12 427.74 543.4
Tab.2  
Fig.11  
Fig.12  
crack length/m methods & comparison natural frequency values
mode 1 mode 2 mode 3 mode 4 mode 5
l = 0.1 XCS-FEM-DSG3 249.26 279.09 409.57 493.0 567.90
ANSYS 243.76 273.71 399.53 481.3 555.75
relative error/% 2.21 1.93 2.45 2.37 2.14
l = 0.2 XCS-FEM-DSG3 247.47 278.34 399.44 490.17 541.51
ANSYS 242.28 272.79 389.19 477.75 521.17
relative error/% 2.10 1.99 2.57 2.53 3.76
l = 0.3 XCS-FEM-DSG3 242.41 270.90 376.62 418.65 480.85
ANSYS 237.07 264.78 365.07 402.18 467.74
relative error/% 2.20 2.26 3.07 3.93 2.73
l = 0.4 XCS-FEM-DSG3 224.35 239.52 327.81 354.57 452.75
ANSYS 218.70 231.64 318.68 345.45 440.96
relative error/% 2.52 3.29 2.79 2.57 2.60
l = 0.5 XCS-FEM-DSG3 190.28 194.66 303.68 344.93 423.02
ANSYS 183.29 186.01 296.54 338.43 412.55
relative error/% 3.67 4.44 2.35 1.88 2.48
Tab.3  
methods & comparison mesh size natural frequency values
mode 1 mode 2 mode 3 mode 4 mode 5
XCS-FEM-DSG3 24×24 246.31 274.19 388.88 441.14 493.54
28×28 243.12 270.44 377.33 418.37 485.06
32×32 242.78 270.41 377.19 421.77 483.57
40×40 242.41 270.9 376.62 418.65 480.85
60×60 241.23 270.11 373.01 413.14 477.12
ANSYS 40×40 237.07 264.78 365.07 402.18 467.74
Tab.4  
Fig.13  
Fig.14  
crack lengths /m methods & comparison natural frequency values
mode 1 mode 2 mode 3 mode 4 mode 5
l= 0.1 XCS-FEM-DSG3 250.06 275.03 412.17 494.88 569.96
ANSYS 244.71 269.96 405.08 480.69 554.18
relative error/% 2.14 1.84 1.72 2.87 2.77
l= 0.2 XCS-FEM-DSG3 249.57 258.09 406.18 492.72 567.84
ANSYS 244.69 252.92 403.48 479.71 546.33
relative error/% 1.95 2.01 0.66 2.64 3.79
l= 0.3 XCS-FEM-DSG3 226.39 244.07 388.47 486.68 550.08
ANSYS 221.99 242.21 393.48 479.46 533.76
relative error/% 1.94 0.76 1.29 1.48 2.97
Tab.5  
methods & comparison mesh size natural frequency values
mode 1 mode 2 mode 3 mode 4 mode 5
XCS-FEM-DSG3 24×24 235.54 249.45 402.87 497.5 561.29
28×28 231.35 248.03 398.56 494.06 557.22
32×32 227.12 247.00 395.46 491.94 553.32
40×40 226.39 244.07 388.47 486.68 550.08
60×60 224.18 241.87 384.51 482.95 546.28
ANSYS 40×40 221.99 242.21 393.48 479.46 553.76
Tab.6  
Fig.15  
Fig.16  
1 Kwon  Y W. Development of finite element shape functions with derivative singularity. Computers & Structures, 1988, 30(5): 1159–1163
2 Krawczuk  M. Rectangular shell finite element with an open crack. Finite Elements in Analysis and Design, 1994, 15(3): 233–253
3 Liu  R, Zhang  T, Wu  X, Wang  C. Determination of stress intensity factors for a cracked shell under bending with improved shell theories. Journal of Aerospace Engineering, 2006, 19(1): 21–28
4 Vaziri  A, Estekanchi  H E. Buckling of cracked cylindrical thin shells under combined internal pressure and axial compression. Thin-walled Structures, 2006, 44(2): 141–151
5 Fu  J, To  C W S. Bulging factors and geometrically nonlinear responses of cracked shell structures under internal pressure. Engineering Structures, 2012, 41: 456–463
6 Belytschko  T, Black  T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
7 Moës  N, Dolbow  J, Belytschko  T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46: 131–150
8 Stolarska  M, Chopp  D L, Moës  N, Belytschko  T. Modelling crack growth by level sets in the extended finite element method. International Journal for Numerical Methods in Engineering, 2001, 51(8): 943–960
9 Bachene  M, Tiberkak  R, Rechak  S. Vibration analysis of cracked plates using the extended finite element method. Archive of Applied Mechanics, 2009, 79(3): 249–262
10 Natarajan  S, Baiz  P M, Bordas  S, Rabczuk  T, Kerfriden  P. Natural frequencies of cracked functionally graded material plates by the extended finite element method. Composite Structures, 2011, 93(11): 3082–3092
11 Rabczuk  T, Areias  P M A. A meshfree thin shell for arbitrary evolving cracks based on an external enrichment. CMES-Computer Modeling in Engineering and Sciences, 2006, 16: 115–130
12 Rabczuk  T, Areias  P M A, Belytschko  T. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
13 Zhuang  X, Augarde  C E, Mathisen  K M. Fracture modeling using meshless methods and level sets in 3D: Framework and modeling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998
14 Chau-Dinh  T, Zi  G, Lee  P S, Rabczuk  T, Song  J H. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92−93: 242–256
15 Ghorashi  S S, Valizadeh  N, Mohammadi  S, Rabczuk  T. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146
16 Nguyen-Thanh  N, Valizadeh  N, Nguyen  M N, Nguyen-Xuan  H, Zhuang  X, Areias  P, Zi  G, Bazilevs  Y, De Lorenzis  L, Rabczuk  T. An extended isogeometric thin shell analysis based on Kirchhoff−Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291
17 Areias  P, Rabczuk  T. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
https://doi.org/10.1002/nme.4477
18 Areias  P, Rabczuk  T, Camanho  P P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947
19 Areias  P, Rabczuk  T, Dias-da-Costa  D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137
20 Areias  P, Rabczuk  T, Camanho  P P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63
21 Liu  GR, Nguyen-Thoi  T. Smoothed Finite Element Methods. NewYork: Taylor and Francis Group, 2010
22 Liu  G R, Nguyen-Thoi  T, Nguyen-Xuan  H, Dai  K Y, Lam  K Y. On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM). International Journal for Numerical Methods in Engineering, 2009, 77(13): 1863–1869
23 Nguyen  T T, Liu  G R, Dai  K Y, Lam  K Y. Selective smoothed finite element method. Tsinghua Science and Technology, 2007, 12(5): 497–508
24 Liu  G R, Dai  K Y, Nguyen  T T. A smoothed finite element method for mechanics problems. Computational Mechanics, 2007, 39(6): 859–877
25 Nguyen-Thoi  T, Liu  G R, Nguyen-Xuan  H. Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems. International Journal of Computational Methods, 2009, 06(04): 633–666
26 Nguyen-Thoi  T, Liu  G R, Nguyen-Xuan  H, Nguyen-Tran  C. Adaptive analysis using the node-based smoothed finite element method (NS-FEM). International Journal for Numerical Methods in Biomedical Engineering, 2011, 27(2): 198–218
27 Liu  G R, Nguyen-Thoi  T, Nguyen-Xuan  H, Lam  K Y. A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Computers & Structures, 2009, 87(1−2): 14–26
28 Nguyen-Thoi  T, Liu  G R, Nguyen-Xuan  H, Nguyen-Tran  C. An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27: 1446–1472
29 Liu  G R, Nguyen-Thoi  T, Lam  K Y. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. Journal of Sound and Vibration, 2009, 320(4−5): 1100–1130
30 Nguyen-Thoi  T, Liu  G R, Lam  K Y, Zhang  G Y. A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. International Journal for Numerical Methods in Engineering, 2009, 78(3): 324–353
31 Liu  G R, Nguyen-Xuan  H, Nguyen-Thoi  T, Xu  X. A novel Galerkin-like weakform and a superconvergent alpha finite element method (S-alpha FEM) for mechanics problems using triangular meshes. Journal of Computational Physics, 2009, 228(11): 4055–4087
32 Liu  G R, Nguyen-Thoi  T, Lam  K Y. A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45−48): 3883–3897
33 Liu  G R, Nguyen-Xuan  H, Nguyen-Thoi  T. A variationally consistent alpha FEM (VC alpha FEM) for solution bounds and nearly exact solution to solid mechanics problems using quadrilateral elements. International Journal for Numerical Methods in Engineering, 2011, 85(4): 461–497
34 Liu  G R, Nguyen-Thoi  T, Lam  K Y. A novel FEM by scaling the gradient of strains with factor alpha (alpha FEM). Computational Mechanics, 2009, 43(3): 369–391
35 Liu  G R, Nguyen  T T, Dai  K Y, Lam  K Y. Theoretical aspects of the smoothed finite element method (SFEM). International Journal for Numerical Methods in Engineering, 2007, 71(8): 902–930
36 Liu  G R, Nguyen-Xuan  H, Nguyen-Thoi  T. A theoretical study on the smoothed FEM (S-FEM) models: Properties, accuracy and convergence rates. International Journal for Numerical Methods in Engineering, 2010, 84(10): 1222–1256
37 Nguyen-Xuan  H, Rabczuk  T, Bordas  S, Debongnie  J F. A smoothed finite element method for plate analysis. Computer Methods in Applied Mechanics and Engineering, 2008, 197(13−16): 1184–1203
38 Nguyen-Xuan  H, Liu  G R, Thai-Hoang  C, Nguyen-Thoi  T. An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner−Mindlin plates. Computer Methods in Applied Mechanics and Engineering, 2010, 199(9−12): 471–489
39 Nguyen-Xuan  H, Rabczuk  T, Nguyen-Thanh  N, Nguyen-Thoi  T, Bordas  S. A node-based smoothed finite element method with stabilized discrete shear gap technique for analysis of Reissner−Mindlin plates. Computational Mechanics, 2010, 46(5): 679–701
40 Nguyen-Xuan  H, Tran  L V, Nguyen-Thoi  T, Vu-Do  H C. Analysis of functionally graded plates using an edge-based smoothed finite element method. Composite Structures, 2011, 93(11): 3019–3039
41 Nguyen-Xuan  H, Tran  L V, Thai  C H, Nguyen-Thoi  T. Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing. Thin-walled Structures, 2012, 54: 1–18
42 Thai  C H, Tran  L V, Tran  D T, Nguyen-Thoi  T, Nguyen-Xuan  H. Analysis of laminated composite plates using higher-order shear deformation plate theory and node-based smoothed discrete shear gap method. Applied Mathematical Modelling, 2012, 36(11): 5657–5677
43 Nguyen-Thoi  T, Bui-Xuan  T, Phung-Van  P, Nguyen-Xuan  H, Ngo-Thanh  P. Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements. Computers & Structures, 2013, 125: 100–113
44 Nguyen-Thoi  T, Phung-Van  P, Luong-Van  H, Nguyen-Van  H, Nguyen-Xuan  H. A cell-based smoothed three-node Mindlin plate element (CS-MIN3) for static and free vibration analyses of plates. Computational Mechanics, 2013, 51(1): 65–81
45 Nguyen-Thoi  T, Phung-Van  P, Thai-Hoang  C, Nguyen-Xuan  H. A cell-based smoothed discrete shear gap method (CS-DSG3) using triangular elements for static and free vibration analyses of shell structures. International Journal of Mechanical Sciences, 2013, 74: 32–45
46 Phan-Dao  H H, Nguyen-Xuan  H, Thai-Hoang  C, Nguyen-Thoi  T, Rabczuk  T. An edge-based smoothed finite element method for analysis of laminated composite plates. International Journal of Computational Methods, 2013, 10(01): 1340005
47 Phung-Van  P, Nguyen-Thoi  T, Tran  L V, Nguyen-Xuan  H. A cell-based smoothed discrete shear gap method (CS-DSG3) based on the C0-type higher-order shear deformation theory for static and free vibration analyses of functionally graded plates. Computational Materials Science, 2013, 79: 857–872
48 Luong-Van  H, Nguyen-Thoi  T, Liu  G R, Phung-Van  P. A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic foundation. Engineering Analysis with Boundary Elements, 2014, 42: 8–19
49 Nguyen-Thoi  T, Bui-Xuan  T, Phung-Van  P, Nguyen-Hoang  S, Nguyen-Xuan  H. An edge-based smoothed three-node mindlin plate element (ES-MIN3) for static and free vibration analyses of plates. KSCE Journal of Civil Engineering, 2014, 18(4): 1072–1082
50 Phung-Van  P, Nguyen-Thoi  T, Luong-Van  H, Lieu-Xuan  Q. Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0-HSDT. Computer Methods in Applied Mechanics and Engineering, 2014, 270: 15–36
51 Phung-Van  P, Nguyen-Thoi  T, Le-Dinh  T, Nguyen-Xuan  H. Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3). Smart Materials and Structures, 2013, 22(9): 17
52 Nguyen-Xuan  H, Liu  G R, Nguyen-Thoi  T, Nguyen-Tran  C. An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures. Smart Materials and Structures, 2009, 18(6): 1–12
53 Liu  G R, Chen  L, Nguyen-Thoi  T, Zeng  K Y, Zhang  G Y. A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems. International Journal for Numerical Methods in Engineering, 2010, 83(11): 1466–1497
54 Nguyen-Thoi  T, Liu  G R, Vu-Do  H C, Nguyen-Xuan  H. A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh. Computer Methods in Applied Mechanics and Engineering, 2009, 198(41−44): 3479–3498
55 Nguyen-Thoi  T, Vu-Do  H C, Rabczuk  T, Nguyen-Xuan  H. A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45−48): 3005–3027
56 Nguyen-Thoi  T, Liu  G R, Vu-Do  H C, Nguyen-Xuan  H. An edge-based smoothed finite element method for visco-elastoplastic analyses of 2D solids using triangular mesh. Computational Mechanics, 2009, 45(1): 23–44
57 Nguyen-Xuan  H, Rabczuk  T, Nguyen-Thoi  T, Tran  T N, Nguyen-Thanh  N. Computation of limit and shakedown loads using a node-based smoothed finite element method. International Journal for Numerical Methods in Engineering, 2012, 90(3): 287–310
58 Tran  T N, Liu  G R, Nguyen-Xuan  H, Nguyen-Thoi  T. An edge-based smoothed finite element method for primal−dual shakedown analysis of structures. International Journal for Numerical Methods in Engineering, 2010, 82: 917–938
59 Nguyen-Thoi  T, Phung-Van  P, Rabczuk  T, Nguyen-Xuan  H, Le-Van  C. An application of the ES-FEM in solid domain for dynamic analysis of 2d fluid-solid interaction problems. International Journal of Computational Methods, 2013, 10
60 Nguyen-Thoi  T, Phung-Van  P, Rabczuk  T, Nguyen-Xuan  H, Le-Van  C. Free and forced vibration analysis using the n-sided polygonal Cell-Based Smoothed Finite Element Method (NCS-FEM). International Journal of Computational Methods, 2013, 10(01): 1340008
61 Bletzinger  K U, Bischoff  M, Ramm  E. A unified approach for shear-locking-free triangular and rectangular shell finite elements. Computers & Structures, 2000, 75(3): 321–334
62 Phung-Van  P, Nguyen-Thoi  T, Tran  L V, Nguyen-Xuan  H. A cell-based smoothed discrete shear gap method (CS-DSG3) based on the C-0-type higher-order shear deformation theory for static and free vibration analyses of functionally graded plates. Computational Materials Science, 2013, 79: 857–872
63 Phung-Van  P, Nguyen-Thoi  T, Dang-Trung  H, Nguyen-Minh  N. A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise theory based on the C0-type higher-order shear deformation for static and free vibration analyses of sandwich and composite plates. Composite Structures, 2014, 111: 553–565
64 Phung-Van  P, Luong-Van  H, Nguyen-Thoi  T, Nguyen-Xuan  H. A cell-based smoothed discrete shear gap method (CS-DSG3) based on the higher-order shear deformation theory for dynamic responses of Mindlin plates on the viscoelastic foundation subjected to a moving sprung vehicle. International Journal for Numerical Methods in Engineering, 2014, 98(13): 988–1014
65 Phung-Van  P, Nguyen-Thoi  T, Luong-Van  H, Thai-Hoang  C, Nguyen-Xuan  H. A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation. Computer Methods in Applied Mechanics and Engineering, 2014, 272: 138–159
66 Bischoff  M, Bletzinger  K U. Stabilized DSG plate and shell elements. Trends in Computational structural mechanics. CIMNE. Barcelona, Spain, 2001
67 Lyly  M, Stenberg  R, Vihinen  T. A stable bilinear element for the Reissner-Mindlin plate model. Computer Methods in Applied Mechanics and Engineering, 1993, 110(3−4): 343–357
68 Babuška  I, Caloz  G, Osborn  J. Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM Journal on Numerical Analysis, 1994, 31(4): 945–981
69 Melenk  J M. On Generalized Finite Element M<?Pub Caret?>ethods: University of Maryland, 1995
70 Babuška  I, Melenk  J. The partition of unity finite element method. International Journal for Numerical Methods in Engineering, 1997, 40(4): 727–758
71 Simone  A, Duarte  C A, Van der Giessen  E. A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries. International Journal for Numerical Methods in Engineering, 2006, 67(8): 1122–1145
72 Babuška  I, Nistor  V, Tarfulea  N. Generalized finite element method for second-order elliptic operators with Dirichlet boundary conditions. Journal of Computational and Applied Mathematics, 2008, 218(1): 175–183
73 Dolbow  J, Moës  N, Belytschko  T. Modeling fracture in Mindlin−Reissner plates with the extended finite element method. International Journal of Solids and Structures, 2000, 37(48−50): 7161–7183
74 Ventura  G. On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite-Element Method. International Journal for Numerical Methods in Engineering, 2006, 66(5): 761–795
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed