Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2015, Vol. 9 Issue (4): 359-382   https://doi.org/10.1007/s11709-015-0304-z
  本期目录
Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM
Himanshu PATHAK1,Akhilendra SINGH2,*(),I.V. SINGH3,S. K. YADAV3
1. Department of Mechanical Engineering, Shiv Nadar University, Gautam Budha Nagar 201314, India
2. Department of Mechanical Engineering, IIT Patna, Patna 800013, India
3. Department of Mechanical and Industrial Engineering, IIT Roorkee, Roorkee 247667, India
 全文: PDF(4163 KB)   HTML
Abstract

This paper deals with the fatigue crack growth simulations of three-dimensional linear elastic cracks by XFEM under cyclic thermal load. Both temperature and displacement approximations are extrinsically enriched by Heaviside and crack front enrichment functions. Crack growth is modelled by successive linear extensions, and the end points of these linear extensions are joined by cubic spline segments to obtain a modified crack front. Different crack geometries such as planer, non-planer and arbitrary spline shape cracks are simulated under thermal shock, adiabatic and isothermal loads to reveal the sturdiness and versatility of the XFEM approach.

Key words3-D cracks    fatigue life    Paris law    thermal load    XFEM
收稿日期: 2015-04-01      出版日期: 2015-11-26
Corresponding Author(s): Akhilendra SINGH   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2015, 9(4): 359-382.
Himanshu PATHAK,Akhilendra SINGH,I.V. SINGH,S. K. YADAV. Fatigue crack growth simulations of 3-D linear elastic cracks under thermal load by XFEM. Front. Struct. Civ. Eng., 2015, 9(4): 359-382.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-015-0304-z
https://academic.hep.com.cn/fsce/CN/Y2015/V9/I4/359
Fig.1  
Fig.2  
Fig.3  
Fig.4  
S. No. parameter numerical value
1 elastic modulus ( E ) 200 GPa
2 Poisson ratio ( ν ) 0.3
3 fracture toughness ( K I C ) 60 MPa m
4 thermal expansion coefficient ( α ) 11.7×10−6/°C
5 thermal conductivity ( K ) 250 W/m-K
6 Paris constant ( C ) 2.087136×10−13 m/cycle
7 Paris exponent ( m ) 3.32
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Fig.27  
Fig.28  
Fig.29  
Fig.30  
Fig.31  
Fig.32  
Fig.33  
Fig.34  
Fig.35  
Fig.36  
Fig.37  
p ( x ) = complete basis vector
a = set of unknown coefficient
N j = Lagrange shape functions
u j = field variable for the continuous part of domain
a j = additional degree of freedom associated with Heaviside function
H ( x ) = Heaviside function
c j α = additional DOFs associated with the four asymptotic enrichment functions
n = set of all nodes in the mesh
n s = set of all nodes associated with the crack surface
n t = set of nodes associated with the crack front
q = heat flux vector
Q = heat source
k = thermal conductivity
σ = Cauchy stress tensor
b = Body force per unit volume
s = symmetric gradient operator
C = isotropic fourth order tensor
T = temperature field
ε = strain vector
ε T = thermal strain vector
T r e f = reference temperature
α = thermal expansion coefficient
I = second order identity tensor
K = global stiffness matrix
f = force vector
E = Young’s modulus
ν = Poisson's ratio
Ν i = finite element shape function
ψ = additional enrichment function
f ( x ) = vector between the point x and its projection on the crack surface
Γ c r = crack surface
φ ( x ) = signed distance function
( X , Y , Z ) = global Cartesian coordinate system
( ξ 1 , ξ 2 , ξ 3 ) = curvilinear coordinate system
( r , θ ) = polar coordinate system
( ξ , η , ζ ) = natural coordinate system
( K I , K I I   a n d   K I I I ) = stress intensity factors
W s = strain energy density
δ 1 j = Kronecker delta function
θ c = crack growth direction
K I C = fracture toughness
m = Paris exponent
C = Paris constant
Tab.2  
1 Mukhopadhyay  N K, Maiti  S K, Kakodkar  A. Effect of modelling of traction and thermal singularities on accuracy of SIFS computation through modified crack closure integral in BEM. Engineering Fracture Mechanics, 1999, 64(2): 141–159
2 Dai  H L, Wang  X. Thermo-electro-elastic transient responses in piezoelectric hollow structures. International Journal of Solids and Structures, 2005, 42(3–4): 1151–1171
3 Wang  T H, Lai  Y S. Submodeling analysis for path-dependent thermomechanical problems. Journal of Electronic Packaging, 2005, 127(2): 135–140
4 Balderrama  R, Cisilino  A P, Martinez  M. Boundary element method analysis of three-dimensional thermoelastic fracture problems using the energy domain integral. Journal of Applied Mechanics, 2006, 73(6): 959–969
5 Zhong  X C, Lee  K Y. A thermal-medium crack model. Mechanics of Materials, 2012, 51: 110–117
6 Barsoum  R S. Triangular quarter-point elements as elastic and perfectly plastic crack tip elements. International Journal for Numerical Methods in Engineering, 1977, 11(1): 85–98
7 Nash Gifford  L Jr, Hilton  P D. Stress intensity factors by enriched finite elements. Engineering Fracture Mechanics, 1978, 10(3): 485–496
8 Nikishkov  G P, Atluri  S N. An equivalent domain integral method for computing crack tip integral parameters in non-elastic, thermo-mechanical fracture. Engineering Fracture Mechanics, 1987, 26(6): 851–867
https://doi.org/10.1016/0013-7944(87)90034-8
9 Rhee  H C, Salama  M M. Mixed-mode stress intensity factor solutions of a warped surface flaw by three-dimensional finite element analysis. Engineering Fracture Mechanics, 1987, 28(2): 203–209
https://doi.org/10.1016/0013-7944(87)90214-1
10 Carter  B, Chen  C S, Chew  L P, Chrisochoides  N, Gao  G R, Heber  G, Ingraffea  A R, Krause  R, Myers  C, Nave  D, Pingali  K, Stodghill  P, Vavasis  S, Wawrzynek  P A. Parallel FEM simulation of crack propagation—challenges, status and perspectives, Parallel and Distributed Processing Lecture Notes in Computer Science, 2000, 1800: 443–449
11 Prasad  N N V, Aliabadi  M H, Rooke  D P. Incremental crack growth in thermoelastic problems. International Journal of Fracture, 1994, 66(3): 45–50
https://doi.org/10.1007/BF00042591
12 Prasad  N N V, Aliabadi  M H, Rooke  D P. The dual boundary element method for transient thermoelastic crack problems. International Journal of Solids and Structures, 1996, 33(19): 2695–2718
13 Keppas  L K, Anifantis  N K. BEM prediction of TBC fracture resistance. Engineering against Fracture Proceeding of the 1st Conference, 2009, 551–560
14 Pant  M, Singh  I V, Mishra  B K. Evaluation of mixed mode stress intensity factors for interface cracks using EFGM. Applied Mathematical Modelling, 2011, 35(7): 3443–3459
15 Pathak  H, Singh  A, Singh  I V. Fatigue crack growth simulations of homogeneous and bi-material interfacial cracks using element free Galerkin method. Applied Mathematical Modelling, 2014, 38(13): 3093–3123
16 Melenk  J, Babuska  I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1–4): 289–314
17 Belytschko  T, Black  T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
18 Li  S, Liu  W K. Meshfree Particle Methods. Springer, ISBN 978-3-540-71471-2, 2004
19 Moral  PD, Doucet  A. Particle methods: An introduction with applications. RR-6991, 2009, 46
20 Rabczuk  T, Belytschko  T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
21 Rabczuk  T, Song  J H, Belytschko  T. Simulations of instability in dynamic fracture by the cracking particles method. Engineering Fracture Mechanics, 2009, 76(6): 730–741
22 Rabczuk  T, Zi  G, Bordas  S, Nguyen-Xuan  H. A simple and robust three-dimensional cracking-particle method. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
23 Xu  M, Gracie  R, Belytschko  T. Multiscale Modeling with Extended Bridging Domain Method. Bridging the Scales in Science and Engineering, Oxford Press, 2009, 1–32
24 Bhardwaj  G, Singh  I V, Mishra  B K, Bui  T Q. Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different load and boundary conditions. Composite Structures, 2015, 126: 347–359
25 Bhardwaj  G, Singh  I V, Mishra  B K. Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 186–229
26 Holl  M, Loehnert  S, Wriggers  P. An adaptive multiscale method for crack propagation and crack coalescence. International Journal for Numerical Methods in Engineering, 2013, 93(1): 23–51
27 Yang  S W, Budarapu  P R, Mahapatra  D R, Bordas  S P A, Zi  G, Rabczuk  T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96: 382–395
28 Kumar  S, Singh  I V, Mishra  B K, Rabczuk  T. Modeling and simulation of kinked cracks by virtual node XFEM. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1425–1466
29 Sukumar  N, Möes  N, Moran  B, Belytschko  T. Extended finite element method for three-dimensional crack modeling. International Journal for Numerical Methods in Engineering, 2000, 48: 1549–1570
30 Sukumar  N, Chopp  D L, Moran  B. Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Engineering Fracture Mechanics, 2003, 70(1): 29–48
31 Daux  C, Möes  N, Dolbow  J, Sukumar  N, Belytschko  T. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, 2000, 48: 1741–1760
32 Sukumar  N, Chopp  D L, Möes  N, Belytschko  T. Modelling holes and inclusions by level sets in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46–47): 6183–6200
33 Liu  X Y, Xiao  Q Z, Karihaloo  B L. XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials. International Journal for Numerical Methods in Engineering, 2004, 59(8): 1103–1118
34 Ventura  G, Budyn  E, Belytschko  T. Vector level sets for description of propagating cracks in finite elements. International Journal for Numerical Methods in Engineering, 2003, 58(10): 1571–1592
35 Möes  N, Gravouil  A, Belytschko  T. Non-planar 3D crack growth by the extended finite element and level sets-Part-I: Mechanical model. International Journal for Numerical Methods in Engineering, 2002, 53: 2549–2568
36 Möes  N, Gravouil  A, Belytschko  T. Non-planar 3D crack growth by the extended finite element and level sets-Part II: Level set update. International Journal for Numerical Methods in Engineering, 2002, 53: 2569–2586
37 Shi  J, Chopp  D, Lua  J, Sukumar  N, Belytschko  T. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Engineering Fracture Mechanics, 2010, 77(14): 2840–2863
38 Unger  J F, Eckardt  S, Könke  C. Modelling of cohesive crack growth in concrete structures with the extended finite element. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41–44): 4087–4100
39 Asferg  J L, Poulsen  P N, Nielsen  L O. A consistent partly cracked XFEM element for cohesive crack growth. International Journal for Numerical Methods in Engineering, 2007, 72(4): 464–485
40 Zhang  X D, Bui  Q T. A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modelling inn concrete structures. Engineering Computations, 2015, 32(2): 473–497
41 Chopp  D L, Sukumar  N. Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. International Journal of Engineering Science, 2003, 41(8): 845–869
42 Giner  E, Sukumar  N, Denia  F D, Fuenmayor  F J. Extended finite element method for fretting fatigue crack propagation. International Journal of Solids and Structures, 2008, 45(22–23): 5675–5687
43 Singh  I V, Mishra  B K, Bhattacharya  S, Patil  R U. The numerical simulation of fatigue crack growth using extended finite element method. International Journal of Fatigue, 2012, 36(1): 109–119
44 Bhattacharya  S, Singh  I V, Mishra  B K. Fatigue life estimation of functionally graded materials using XFEM. Engineering with Computers, 2013, 29(4): 427–448
45 Bhattacharya  S, Singh  I V, Mishra  B K. Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM. International Journal of Fracture, 2013, 183(1): 81–97
46 Bhattacharya  S, Singh  I V, Mishra  B K, Bui  T Q. Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM. Computational Mechanics, 2013, 52(4): 799–814
47 Bhattacharya  S, Singh  I V, Mishra  B K. Fatigue life simulation of functionally graded materials under cyclic thermal load using XFEM. International Journal of Mechanical Sciences, 2014, 82: 41–59
48 Kumar  S, Singh  I V, Mishra  B K. A Homogenized XFEM approach to simulate fatigue crack growth problems. Computers & Structures, 2015b, 150: 1–22
49 Pathak  H, Singh  A, Singh  I V, Yadav  S K. A simple and efficient XFEM approach for 3-D cracks simulations. International Journal of Fracture, 2013, 181(2): 189–208
50 Bui  Q T, Zhang  Ch. Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading. Computational Materials Science, 2012, 62: 243–257
51 Bui  Q T, Zhang  Ch. Analysis of generalized dynamic intensity factors of cracked magnetoelectrostatic solids by XFEM. Finite Elements in Analysis and Design, 2013, 69: 19–36
52 Sharma  K, Bui  Q T, Zhang  Ch, Bhargava  R R. Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method. Engineering Fracture Mechanics, 2013, 104: 114–139
53 Liu  P, Yu  T T, Bui  Q T, Zhang  Ch. Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM. Computational Materials Science, 2013, 69: 542– 558
54 Liu  P, Yu  T T, Bui  Q T, Zhang  Ch, Xu  Y P, Lim  C W. Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. International Journal of Solids and Structures, 2014, 51(11–12): 2167–2182
55 Liu  P, Bui  Q T, Zhu  D, Yu  T T, Wang  J W, Yin  S H, Hirose  S. Buckling failure analysis of cracked functionally graded plates by a stabilised discrete shear gap extended 3-noded triangular plate element. Composites. Part B, Engineering, 2015, 77: 179–193
56 Yu  T T, Bui  Q T, Liu  P, Zhang  Ch, Hirose  S. Interface dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method. International Journal of Solids and Structures, doi: 10.1016/j.ijsolstr.2015.03.037
57 Pathak  H, Singh  A, Singh  I V. Fatigue crack growth simulations of 3-D problems using XFEM. International Journal of Mechanical Sciences, 2013b, 76: 112–131
58 Moës  N, Dolbow  J, Belytchsko  T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46: 131–150
59 Sih  G C. On singular character of thermal stress near a crack tip. Journal of Applied Mechanics, 1962, 29(3): 587–589
60 Duflot  M. The extended finite element method in thermo-elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 2008, 74(5): 827–847
61 Fries  T P. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 2008, 75(5): 503–532
62 Mohammadi  S. Extended finite element method for fracture analysis of structures. Singapore: Blackwell Publishing, ISBN-978-1-4051-7060-4, 2008
63 Singh  I V, Mishra  B K, Bhattacharya  S. XFEM simulation of cracks, holes and inclusions in functionally graded materials. International Journal of Mechanics and Materials in Design, 2011, 7(3): 199–218
64 Moran  B, Shih  C. A general treatment of crack tip contour integrals. International Journal of Fracture, 1987, 35(4): 295–310
65 Banks-Sills  L, Dolev  O. The conservative M-integral for thermo-elastic problems. International Journal of Fracture, 2004, 125(1): 149–170
66 Erdogan  F, Sih  G. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 1963, 85(4): 519–527
67 Das  B R. Thermal stresses in a long cylinder containing a penny shaped crack. International Journal of Engineering Science, 1968, 6(9): 497–516
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed