Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2015, Vol. 9 Issue (3): 286-296   https://doi.org/10.1007/s11709-015-0307-9
  本期目录
Aseismic smart building isolation systems under multi-level earthquake excitations: Part I, conceptual design and nonlinear analysis
Min-Ho CHEY(),J. Geoffrey CHASE2,John B. MANDER3,Athol J. CARR4
1. School of Architecture & Civil Engineering, Keimyung University, Daegu 42601, Korea
2. Department of Mechanical Engineering, University of Canterbury, Christchurch 8140, New Zealand
3. Zachry Department of Civil Engineering, Texas A&M University, Texas 77843, USA
4. Department of Civil & Natural Resources Engineering, University of Canterbury, Christchurch 8140, New Zealand
 全文: PDF(901 KB)   HTML
Abstract

As a novel structural control strategy, tuned mass damper (TMD) inspired passive and semi-active smart building isolation systems are suggested to reduce structural response and thus mitigate structural damage due to earthquake excitations. The isolated structure’s upper stories can be utilized as a large scaled TMD, and the isolation layer, as a core design point, between the separated upper and lower stories entails the insertion of rubber bearings and (i) viscous dampers (passive) or (ii) resettable devices (semi-active). The seismic performance of the suggested isolation systems are investigated for 12-story reinforced concrete moment resisting frames modeled as “10+ 2” stories and “8+ 4” stories. Passive viscous damper or semi-active resettable devices are parametrically evaluated through the optimal design principle of a large mass ratio TMD. Statistical performance metrics are presented for 30 earthquake records from the three suites of the SAC project. Based on nonlinear structural models, including P-delta effects and modified Takeda hysteresis, the inelastic time history analyses are conducted to compute the seismic performances across a wide range of seismic hazard intensities. Results show that semi-active smart building isolation systems can effectively manage seismic response for multi-degree-of freedom (MDOF) systems across a broader range of ground motions in comparison to uncontrolled case and passive solution.

Key wordstuned mass damper    smart building isolation    resettable device    non-linear    statistical assessment
收稿日期: 2015-03-24      出版日期: 2015-10-09
Corresponding Author(s): Min-Ho CHEY   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2015, 9(3): 286-296.
Min-Ho CHEY,J. Geoffrey CHASE,John B. MANDER,Athol J. CARR. Aseismic smart building isolation systems under multi-level earthquake excitations: Part I, conceptual design and nonlinear analysis. Front. Struct. Civ. Eng., 2015, 9(3): 286-296.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-015-0307-9
https://academic.hep.com.cn/fsce/CN/Y2015/V9/I3/286
members level size/mm area/m2 inertia/m4 LR/m
beams 1 – 6 900 × 400 0.1800 0.02382 0.400
7 – 8 850 × 400 0.1700 0.02017 0.375
9–12 800 × 400 0.1600 0.01689 0.338
exteriorcolumns 1 – 6 775 × 500 0.2906 0.01455 0.450
7 – 8 750 × 500 0.2813 0.01318 0.425
9–12 650 × 500 0.2438 0.00855 0.400
interiorcolumn 1 – 6 800 × 800 0.4800 0.02560 0.450
7 – 8 725 × 725 0.3942 0.01727 0.425
9–12 675 × 675 0.3417 0.01297 0.400
Tab.1  
item 12-story “10+ 2” story “8+ 4” story unit
weight 19,190 19,190 19,190 kN
1st modal mass 1,514 1,528 1,589 kN-s2/m
natural period 1.880 1.863 1.778 sec
frequency 3.34 3.37 3.53 rad/s
damping ratio 0.05 0.05 0.05
1st modal amplitude 1.366 1.305 1.258
Tab.2  
Fig.1  
Fig.2  
equation passive semi-active
“10+ 2” “8+ 4” “10+ 2” “8+ 4”
μ = m 2 / ( φ 1 T [ M ] φ 1 ) (1) 0.244 0.594 0.244 0.594
f 2 = 1 / ( 1 + μ Φ ) ( 1 ξ 1 μ Φ / ( 1 + μ Φ ) ) (2) 0.734 0.544 0.734 0.544
ξ 2 = Φ ( ξ 1 / ( 1 + μ ) + μ / ( 1 + μ ) ) (3) 0.649 0.840
k 2 = m 2 ω 1 2 f 2 2 (kN/m) (4) 2,935 5,293 2,935 5,293
c 2 = 2 m 2 ω 1 f 2 ξ 2 (kN-s/m) (5) 1,252 3,085
resettable device force (kN) 644 1,573
Tab.3  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Jagadish  K S, Prasad  B K R, Rao  P V. Inelastic vibration absorber subjected to earthquake ground motions. Earthquake Engineering & Structural Dynamics, 1979, 7(4): 317–326
2 Miyama  T. Seismic response of multi-story frames equipped with energy absorbing story on its top. In: Proceedings of the10th World Conference of Earthquake Engineering. Madrid, Spain, 1992, VII: 4201–4206
3 Villaverde  R. Aseismic roof isolation system: Feasibility study with 13-story building. Journal of Structural Engineering, 2002, 128(2): 188–196
4 Charng  P H. Base isolation for multistorey building structures. Dissertation for the Doctoral Degree. Christchurch: University of Canterbury, 1998
5 Pan  T C, Ling  S F, Cui  W. Seismic response of segmental buildings. Earthquake Engineering & Structural Dynamics, 1995, 24(7): 1039–1048
6 Pan  T C, Cui  W. Response of segmental buildings to random seismic motions. ISET Journal of Engineering Technology, 1998, 35(4): 105–112
7 Murakami  K, Kitamura  H, Ozaki  H, Teramoto  T. Design and analysis of a building with the middle-story isolation structural system. In: Proceedings of the 12th World Conference of Earthquake Engineering. Auckland, New Zealand, Paper No. 0857, 2000
8 Sueoka  T, Torii  S, Tsuneki  Y. The Application of Response Control Design Using Middle-Story Isolation System to High-Rise Building. In: Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, Canada, Paper No. 3457, 2004
9 Kawamura  S, Sugisaki  R, Ogura  K, Maezawa  S, Tanaka  S, Yajima  A. Seismic isolation retrofit in Japan. In: Proceedings of the 12th World Conference on Earthquake Engineering. Auckland, New Zealand, Paper No. 2523, 2000
10 Zhou  F L, Yang  Z, Liu  W G, Tan  P. New seismic isolation system for irregular structure with the largest isolation building area in the world. In: Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, Canada, Paper No. 2349, 2004
11 De Angelis  M, Perno  S, Reggio  A. Dynamic response and optimal design of structures with large mass ratio TMD. Earthquake Engineering & Structural Dynamics, 2012, 41(1): 41–60
12 Anh  N D, Nguyen  N X. Extension of equivalent linearization method to design of TMD for linear damped systems. Structural Control and Health Monitoring, 2012, 19(6): 565–573
13 Miranda  J C. A method for tuning tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics, 2012, 42(7): 1003–1010
14 Moutinho  C. An alternative methodology for designing tuned mass dampers to reduce seismic vibrations in building structures. Earthquake Engineering & Structural Dynamics, 2012, 41(14): 2059–2073
15 Wang  Z, Chen  Z, Wang  J. Feasibility study of a large-scale tuned mass damper with eddy current damping mechanism. Earthquake Engineering and Engineering Vibration, 2012, 11(3): 391–401
16 Chey  M H, Chase  J G, Mander  J B, Carr  A J. Semi-active tuned mass damper building systems: Design. Earthquake Engineering & Structural Dynamics, 2010, 39(2): 119–139
17 Chey  M H, Chase  J G, Mander  J B, Carr  A J. Semi-active tuned mass damper building systems: Application. Earthquake Engineering & Structural Dynamics, 2010, 39(1): 69–89
18 Chey  M H, Chase  J G, Mander  J B, Carr  A J. Innovative seismic retrofitting strategy of added stories isolation system. Frontiers of Structural and Civil Engineering, 2013, 7(1): 13–23
19 Jury  R D. Seismic load demands on columns of reinforced concrete multistorey frames. ME Thesis, Christchurch: University of Canterbury, 1978
20 NZS4203. New Zealand Standard. Code of Practice for General Structural Design and Design Loadings for Buildings. Standards Association of New Zealand (SANZ), 1976
21 Paulay  T. Moment redistribution in continuous beams of eqrthquake resistant multistorey reinforced concrete frames. Bulletin of the New Zealand National Society of Earthquake Engineering, 1976, 9(4): 205–212
22 Thomson  E D. P-delta effects in ductile reinforced concrete frames under seismic loading. Christchurch: University of Canterbury, 1991
23 NZS4203. New Zealand Standard. Code of Practice for General Structural Design and Design Loadings for Buildings.Standards Association of New Zealand (SANZ), 1992
24 Carr  A J. RUAUMOKO” Computer Program Library. Christchurch: University of Canterbury, 2007
25 Chase  J G, Mulligan  K J, Gue  A, Alnot  T, Rodgers  G, Mander  J B, Elliott  R, Deam  B, Cleeve  L, Heaton  D. Re-shaping hysteretic behaviour using semi-active resettable device dampers. Engineering Structures, 2006, 28(10): 1418–1429
26 Mulligan  K, Chase  J, Gue  A, Mander  J, Alnot  T, Deam  B, Rodgers  G, Cleeve  L, Heaton  D. Resetable devices with customised performance for semi-active seismic hazard mitigation of structures. In: Proceedings of NZ Society for Earthquake Engineering Conference. 11−13 March, 2005, Wairakei, New Zealand, 2005
27 Mulligan  K, Chase  J, Mander  J, Elliot  R. Semi-active resetable actuators incorporating a high pressure air source. In: Proceedings of NZ Society for Earthquake Engineering Conference. 30 March 1 April, Palmerston North, New Zealand, 2007
28 Barroso  L R. Performance evaluation of vibration controlled steel structures under seismic loading. Dissertation for the Doctoral Degree. Stanford: Stanford University, 1999
29 Breneman  S E. Design of active control systems for multi-level seismic resistance. Dissertation for the Doctoral Degree. Stanford: Stanford University, 2000
30 Otani  S. AKE, A Computer Program for Inelastic Response of R/C Frames to Earthquakes. Report UILU-Egn-74−2029, Civil Engineering Studies, University of Illinois at Urbana Champaign, 1974
31 Emori  K, Schnobrich  W C. Analysis of Reinforced Concrete Frame-Wall Structures for Strong Motion Earthquakes. Structural Research Series, No. 434, University of Illinois at Urbana Champaign, 1978
32 Kanaan  A E, Powell  G H. General Purpose Computer Program for Inelastic Dynamic Response of Plane Structures. Report No. EERC 73−6, University of California at Berkeley, 1973
33 Sommerville  P, Smith  N, Punyamurthula  S, Sun  J. Development of ground motion time histories for Phase II of the FEMA/SAC steel project. SAC Back-ground Document Report No. SAC/BD-97/04, 1997
34 Hunt  S J. Semi-active smart-dampers and resetable actuators for multi-level seismic hazard mitigation of steel moment resisting frames. ME Thesis, Christchurch: University of Canterbury, 2002
35 Limpert  E, Stahel  W A, Abbt  M. Log-normal distributions across the sciences: Keys and clues. Bioscience, 2001, 51(5): 341–352
36 Kennedy  R P, Cornell  C A, Campbell  R D, Kaplan  S, Perla  H F. Probabilistic seismic safety study of an existing nuclear-power plant. Nuclear Engineering and Design, 1980, 59(2): 315–338
37 Gupta  A, Krawinkler  H. Estimation of seismic drift demands for frame structures. Earthquake Engineering & Structural Dynamics, 2000, 29(9): 1287–1305
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed