Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2016, Vol. 10 Issue (1): 72-80   https://doi.org/10.1007/s11709-015-0309-7
  本期目录
A wind tunnel study on control methods for cable dry-galloping
Hung D. VO(),Hiroshi KATSUCHI,Hitoshi YAMADA,Mayuko NISHIO
Department of Civil Engineering, Yokohama National University, Yokohama 240-8501, Japan
 全文: PDF(2795 KB)   HTML
Abstract

The common vibration of cable caused by rain-wind combination has been known as most typical type and a lot kind of its countermeasures has been proposed for suppressing this phenomenon. Recently, stayed-cables were also proved that they could be excited in dry state (without rain), which is called dry-galloping. Recently, its mechanisms have been explained by axial flow, Reynolds number and so on. To clarify the characteristics of this galloping, wind tunnel test of a cable model with various kinds of wind angle was conducted. Then, three types of countermeasure were examined to suppress dry- galloping of bridge cable. The tests confirmed that the occurrence of dry-galloping depends on relative wind attacked angles and onset reduced wind speed. Furthermore, single spiral wire, double spiral wire and circular ring were found to have high effectiveness in mitigating this galloping when those are installed properly.

Key wordsdry-galloping    wind-relative angle    single spiral wire    double spiral wire    circular rings
收稿日期: 2014-10-30      出版日期: 2016-01-19
Corresponding Author(s): Hung D. VO   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2016, 10(1): 72-80.
Hung D. VO,Hiroshi KATSUCHI,Hitoshi YAMADA,Mayuko NISHIO. A wind tunnel study on control methods for cable dry-galloping. Front. Struct. Civ. Eng., 2016, 10(1): 72-80.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-015-0309-7
https://academic.hep.com.cn/fsce/CN/Y2016/V10/I1/72
parameters values
diameter, D 75 mm
length 1800 mm
damping ratio 0.127%
mass of cable per unit length, m 3.322 kg/m
Scruton number, 2/ρD2 7.367
natural frequency 1.15 Hz
Reynolds number 0 − 7 × 104
cable surface smooth
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
α β β*
25° 45° 40°
35° 45° 35°
45° 45° 30°
55° 45° 24°
60° 45° 20°
70° 45° 14°
Tab.2  
Fig.6  
only β cases (β = β*) β and α cases β*
40° 45° and 25° 40°
30° 45° and 45° 30°
20° 45° and 60° 20°
Tab.3  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
1 Saito  T, Matsumoto  M, Kitazawa  M. Rain-wind excitation of cables on cable-stayed Higashi-Kobe Bridge and cable vibration control. Proceedings of Cable-stayed and Suspension Bridges, 1994, 2: 507–514
2 Honda  A, Yamanaka  T, Fujiwara  T, Saito  T. Wind tunnel test on rain-induced vibration of the stay cable. In: Proceedings of International Symposium on Cable Dynamics. Liege, Belgium, 1995, 255–262 
3 Matsumoto  M, Yagi  T, Hatsuda  H, Shima  T, Tanaka  M, Naito  H. Dry galloping characteristics and its mechanism of inclined/yawed cables. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(6−7): 317–327
4 Miyata  T, Yamada  H, Hojo  T. Aerodynamic response of PE stay cables with pattern-indented surface. In: Proceedings of Inter- national Conference on Cable-Stayed and Suspension Bridges (AFPC). Deauville, France, 1994, 2: 515–522
5 Cheng  S, Larose  G L, Savage  M G, Tanaka  H, Irwin  P A. Experimental study on the wind-induced vibration of a dry inclined cable−Part I: Phenomena. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(12): 2231–2253
6 Raeesi  A, Cheng  S, Ting  D S K. Aerodynamic damping of an inclined circular cylinder in unsteady flow and its application to the prediction of dry inclined cable galloping. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 113: 12–28
7 Raeesi  A, Cheng  S, Ting  D S K. Ting. A two-degree-of-freedom aeroelastic model for the vibration of dry cylindrical body along unsteady air flow and its application to aerodynamic response of dry inclined cables. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 130: 108–124
8 Jakobsen  J B, Andersen  T L, Macdonald  J H G, Nikitas  N, Larose  G L, Savage  G, McAuliffe  B R. Wind-induced response and excitation, characteristic of an inclined cable model in the critical Reynolds number range. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 110: 100–112
9 Matsumoto  M, Shiraishi  N, Kitazawa  M, Knisely  C W, Shirato  H, Kim  Y, Tsuji  M. Aerodynamic Behavior of Inclined Circular Cylinders Cable Aerodynamics. International Colloquium on Bluff Bodies Aerodynamics and Applications, 1990, 63–72
10 Katsuchi  H, Yamada  H. Wind-tunnel Study on Dry-galloping of Indented-surface Stay Cable. In: Proceedings of the 11th Americas conference on wind engineering. San Jaun, Puerto Rico, June, 2009, 22–26
11 Kleissl  K, Georgakis  C T. Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 104−106: 166–175
12 Flamand  O. Rain/wind-induced vibration of cables. In: Proceedigns of the International Conference on Cable-Stayed and Suspension Bridges (AFPC). Deauville, France, October, 2, 1994, 523–531
13 Gu  M, Du  X. Experimental investigation of rain–wind–<?Pub Caret?>induced vibration of cables in cable-stayed bridges and its mitigation. Journal of Wind Engineering and Industrial Aerodynamics, 2005, 93(1): 79–95
14 Phelan  R, Sarkar  P, Mehta  K. Full-scale measurements to investigate rain−wind induced cable-stay vibration and its mitigation. Journal of Bridge Engineering, 2006, 11(3): 293–304
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed