Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2016, Vol. 10 Issue (2): 198-208   https://doi.org/10.1007/s11709-015-0327-5
  本期目录
New approach to determine the plastic viscosity of self-compacting concrete
M. BENAICHA1,2,*(),X. ROGUIEZ1,O. JALBAUD1,Y. BURTSCHELL1,A. Hafidi ALAOUI2
1. Civil Engineering Department, IUSTI UMR 7343 Laboratory, AMU, Marseille 13453, France
2. Civil Engineering Department, Abdelmalek Essaadi University, Morocco
 全文: PDF(1911 KB)   HTML
Abstract

The rheology of concrete is best measured with the use of a rheometer. The slump flow test gives a good indication of the flowability of the mixture and is therefore still used extensively to judge the workability of SCC mixtures. However, this test presents some defects. The objective of this paper is to develop a new methodology for measuring the workability of a SCC. In this article, we have proposed a correlation between the plastic viscosity of concrete, the time and the characteristics of the flow final profile from the V-funnel coupled to a Plexiglas horizontal channel. The proposed approach, verified by experimental results, represents a simple, economical and usable tool on building site, and it allows to characterize rheologically the SCC from its flow. The comparison between our approach and the experimental values of the plastic viscosity shows that, in a laboratory or on site, instead of using a rheometer we can use our approach to characterize the rheological behavior of a SCC.

Key wordsrheology    viscosity    V-funnel    flow profile    rheometer    behavior
收稿日期: 2015-06-05      出版日期: 2016-05-11
Corresponding Author(s): M. BENAICHA   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2016, 10(2): 198-208.
M. BENAICHA,X. ROGUIEZ,O. JALBAUD,Y. BURTSCHELL,A. Hafidi ALAOUI. New approach to determine the plastic viscosity of self-compacting concrete. Front. Struct. Civ. Eng., 2016, 10(2): 198-208.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-015-0327-5
https://academic.hep.com.cn/fsce/CN/Y2016/V10/I2/198
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
CEM I LF SF SP
C3S/% 67 - - -
C2S /% 12 - - -
C4AF/% 9 - - -
C3A/% 9 - - -
SiO2/% 20.5 - 85 -
Fe2O3/% 2.6 0.04 - -
Al2O3/% 5.0 <0.4 - -
CaO/% 65.0 - 1.0 -
MgO/% 1.1 - - -
SO3/% 3.6 - 2.0 -
loss on ignition/% 1.2 43.10 4.0 -
NaO2 eq./%) 0.43 - 1.0 <1.5
cl- 0.01 - <0.1 <0.1
density 3.15 2.70 2.24 1.85
Blaine/(cm2·g-1) 4750 5550 2200 -
pH - - - 4.5
dry extract/% - - - 41
Tab.1  
mixture codes (W/B)/% SF/%* LF/%* binder/(kg·m-3) SP/(kg·m-3) sand/(kg·m-3) gravel/(kg·m-3)
SCC1 0.34 0 15 470 3.44 870 900
SCC2 0.34 0 25 470 3.44 870 900
SCC3 0.34 0 35 470 3.44 870 900
SCC4 0.34 0 45 470 3.44 870 900
SCC5 0.34 5 0 470 3.44 870 900
SCC6 0.34 10 0 470 3.44 870 900
SCC7 0.34 15 0 470 3.44 870 900
SCC8 0.34 20 0 470 3.44 870 900
SCC9 0.34 0 15 470 6.88 870 900
SCC10 0.34 0 25 470 6.88 870 900
SCC11 0.34 0 35 470 6.88 870 900
SCC12 0.34 0 45 470 6.88 870 900
SCC13 0.34 5 0 470 6.88 870 900
SCC14 0.34 10 0 470 6.88 870 900
SCC15 0.34 15 0 470 6.88 870 900
SCC16 0.34 20 0 470 6.88 870 900
SCC17 0.34 0 15 470 10.32 870 900
SCC18 0.34 0 25 470 10.32 870 900
SCC19 0.34 0 35 470 10.32 870 900
SCC20 0.34 0 45 470 10.32 870 900
SCC21 0.34 5 0 470 10.32 870 900
SCC22 0.34 10 0 470 10.32 870 900
SCC23 0.34 15 0 470 10.32 870 900
SCC24 0.34 20 0 470 10.32 870 900
SCC25 0.34 0 15 470 13.76 870 900
SCC26 0.34 0 25 470 13.76 870 900
SCC27 0.34 0 35 470 13.76 870 900
SCC28 0.34 0 45 470 13.76 870 900
SCC29 0.34 5 0 470 13.76 870 900
SCC30 0.34 10 0 470 13.76 870 900
SCC31 0.34 15 0 470 13.76 870 900
SCC32 0.34 20 0 470 13.76 870 900
Tab.2  
mixture codes V-funnel flow time/s length of flow in the channel /mm Hf/Hi ratio in the channel unit weight/(kg·m-3) yield stress/Pa viscosity/Pa.s
SCC1 19 884 0 2424 103.28 75.3
SCC2 17 888 0 2412 89.28 67.0
SCC3 15 890 0 2403 79.44 58.9
SCC4 14 900 0.98 2396 24.39 51.0
SCC5 24 900 0.97 2402 39.53 85.9
SCC6 31 900 0.95 2398 67.18 112.6
SCC7 33 884 0 2396 102.02 131.8
SCC8 35 880 0 2394 130.21 143.2
SCC9 17 888 0 2422 88.84 67.4
SCC10 15 900 0.98 2420 21.79 55.6
SCC11 13 900 0.98 2420 19.81 47.9
SCC12 11 900 0.99 2402 15.85 39.7
SCC13 22 900 0.97 2400 37.63 78.0
SCC14 28 900 0.97 2390 58.84 100.5
SCC15 30 888 0 2394 92.26 116.2
SCC16 31 882 0 2390 115.99 123.6
SCC17 15 900 0.95 2420 64.18 55.6
SCC18 12 900 0.98 2416 18.2 43.9
SCC19 12 900 0.99 2418 16.28 44.0
SCC20 10 900 1.00 2398 0 35.8
SCC21 19 900 0.98 2392 22.6 69.9
SCC22 25 900 0.95 2388 70.92 88.9
SCC23 25 888 0 2388 96.81 96.6
SCC24 27 880 0 2382 102.6 107.6
SCC25 13 900 1.00 2412 0 47.6
SCC26 12 900 1.00 2398 0 43.4
SCC27 10 900 1.00 2402 0 35.9
SCC28 9 900 1.00 2390 0 31.9
SCC29 16 900 0.98 2380 20.6 58.0
SCC30 20 900 0.98 2380 23.4 73.2
SCC31 22 900 0.95 2378 68.82 80.7
SCC32 25 888 0 2378 86.74 95.9
Tab.3  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
1 Okamura H, Outchi M. Applications of self-compacting concrete in Japan. In: Proceedings of the 3rd international RILEM symposium. Reykjavik, Iceland, <month>Aug</month>, 2003, 3
2 Liu M. Self-compacting concrete with different levels of pulverized fuel ash. Construction & Building Materials, 2010, 24: 1245–1252
3 Leemann A, Loser R, Münch B. Influence of cement type on ITZ porosity and chloride resistance of self-compacting concrete. Cement and Concrete Composites, 2010, 32: 116–120
4 Kou S C, Poon C S. Properties of self-compacting concrete prepared with coarse and fine recycled concrete aggregates. Cement and Concrete Composites, 2009, 31: 622–627
5 Filho F M A, Barragán B E, Casas J R. ALHC El Debs. Hardened properties of self compacting concrete — a statistical approach. Construction & Building Materials, 2010, 24: 1608–1615
6 Boukendakdji O, Kenai S, Kadri E H, Rouis F. Effect of slag on the rheology of fresh self-compacted concrete. Construction & Building Materials, 2009, 23: 2593–2598
7 Craeye B, De Schutter G, Desmet B, Vantomme J, Heirman G, Vandewalle L, Cizer Ö, Aggoun S, Kadri E H. Effect of mineral filler type on autogenous shrinkage of self-compacting concrete. Cement and Concrete Research, 2010, 40: 908–913
8 Billberg, P. Self-compacting concrete for civil engineering structures - The Swedish experience. CBI Report 2:99, Swedish Cement and Concrete Research Institute, SE-100 44 Stockholm
9 Ye G, Liu X, De Schutter G, Poppe A M, Taerwe L. Influence of limestone powder used as filler in SCC on hydration and microstructure of cement pastes. Cement and Concrete Composites, 2007, 29(2): 94–102
10 Poppe A M, Schutter G D. Cement hydration in the presence of high filler contents. Cement and Concrete Research, 2005, 35(12): 2290–2299
11 Assie S, Escadeillas G, Waller V. Estimates of self-compacting concrete ‘potential’ durability. Construction & Building Materials, 2007, 21(10): 1909–1917
12 Banfill P F G. The rheology of fresh mortar. Magazine of Concrete Research, 1991, 43(154): 13–21
13 Chidiac S E, Maadani O, Razaqpur A G, Mailvaganam N P. Controlling the quality of fresh concrete — a new approach. Magazine of Concrete Research, 2000, 52(5): 353–363
14 Chidiac S E, Maadani O, Razaqpur A G, Mailvaganam N P. Correlation of rheological properties to durability and strength of hardened concrete. Journal of Materials in Civil Engineering, 2003, 15(4): 391–399
15 Chidiac S E, Mahmoodzadeh F. Plastic viscosity of fresh concrete — A critical review of predictions methods. Cement and Concrete Composites, 2009, 31: 535–544
16 Bird R B, Dai G C, Yarusso B J. The rheology and flow of viscoplastic materials. Rev Chem Eng, 1983, 1: 1–70
17 Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena, New York: Wiley, 1960
18 Bird R B, Hassager O, Armstrong R C. Dynamics of Polymeric Liquids. Vol. 1: Fluid mechanics. 2nd ed. New York: Wiley, 1987
19 Mitsoulis E. Flows of Viscoplastic Materials: Models and Computations. Rheology Reviews, 2007, 135–178
20 Tattersall G H. Workability and Quality Control of Concrete. London: E & FN SPON, 1991, 54–77
21 Ferraris C F, Brower E B. Comparison of Concrete Rheometers: International Tests at LCPC (Nantes, France). NIST, 2000, 33–36
22 FNARC. Specification and Guidelines for Self-compacting Concrete. Surrey, UK, <month>Feb.</month>2002, 7–9
23 Petersson O, Gibbs J, Bartos P. Testing SCC: A European Project, Self-compacting concrete. In the 3rd international RILEM symposium. Reykjavik, Iceland, <month>Aug.</month>2003, 299–304
24 Utsi E. Carlsward. Relation between workability and rheological parameters. In: Proceedings of the 3rd international RILEM conference on SCC. août, Reykjavik, Islande, 2003, 154–164
25 Nielsson I, Wallevik O H. Rheological evaluation of some empirical test methods - preliminary results, self-compacting concrete. In: the 3rd international RILEM symposium. Reykjavik, Iceland, <month>Aug</month>, 2003, 59–68
26 Roussel N, Coussot P. Ecoulements d’affaissement et d’étalement: modélisation, analyse et limites pratiques. Revue Européenne de Génie Civil, 2006, 10(1): 25–44
27 Roussel N. The LCPC box: A cheap and simple technique for yield stress measurements of SCC. Materials and Structures, 2007, 889–896
28 Benaicha M. Rheological and mechanical characterization of concrete: New approach. Livre, éditeur: LAP Lambert Academic Publishing, 2013, 68
29 Benaicha M, Alaoui hafidi A, Burtschell Y. Formulation des différents bétons (BAP, BHP et BFUP) à haute teneur en additions minérales: Optimisation pour améliorer le coulage, la résistance au jeune âge et la durabilité des bétons. Thèse de doctorat, AMU, 2013
30 Saak A W, Jennings H M, Shah S P. Characterization of the rheological properties of cement paste for use in self-compacting concrete. In: Proceedings of the 1st international RILEM symposium on “self-compacting concrete”. Stockholm, Sweden, 1999, 83–93
31 Saak A W, Jennings H M, Shah S P. New methodology for designing self-compacting concrete. ACI Materials Journal, 2001, 98(6): 429–439
32 Cyr M. Contribution à la caractérisation des fines minérales et à la compréhension de leur rôle joué dans le comportement rhéologique des matrices cimentaires. Thèse de doctorat en cotutelle, INSA de Toulouse et Université de Sherbrooke, 1999
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed