Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2017, Vol. 11 Issue (3): 338-345   https://doi.org/10.1007/s11709-017-0411-0
  本期目录
Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements
Yanhua GUAN1, Ying GAO1, Renjuan SUN1(), Moon C. WON2, Zhi GE1
1. Department of Transportation Engineering, School of Civil Engineering, Shandong University, Jinan 250061, China
2. Department of Civil, Environment, and Construction Engineering, Texas Tech University, TX 79409-1023, USA
 全文: PDF(2661 KB)   HTML
Abstract

The fast-track repair of deteriorated concrete pavement requires materials that can be placed, cured, and opened to the traffic in a short period. Type III cement and Calcium Sulfoaluminate (CSA) cement are the most commonly used fast-setting hydraulic cement (FSHC). In this study, the properties of Type III and CSA cement concrete, including compressive strength, coefficient of thermal expansion (CTE) and shrinkage were evaluated. The test results indicate that compressive strength of FSHC concrete increased rapidly at the early age. CSA cement concrete had higher early-age and long term strength. The shrinkage of CSA cement concrete was lower than that of Type III cement concrete. Both CSA and Type III cement concrete had similar CTE values. Based on the laboratory results, the CSA cement was selected as the partial-depth rapid repair material for a distressed continuously reinforced concrete pavement. The data collected during and after the repair show that the CSA cement concrete had good short-term and long-term performances and, therefore, was suitable for the rapid repair of concrete pavement.

Key wordsCalcium Sulfoaluminate (CSA) cement    Type III cement    coefficient of thermal expansion (CTE)    shrinkage    rapid repair
收稿日期: 2016-10-27      出版日期: 2017-08-24
Corresponding Author(s): Renjuan SUN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2017, 11(3): 338-345.
Yanhua GUAN, Ying GAO, Renjuan SUN, Moon C. WON, Zhi GE. Experimental study and field application of calcium sulfoaluminate cement for rapid repair of concrete pavements. Front. Struct. Civ. Eng., 2017, 11(3): 338-345.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0411-0
https://academic.hep.com.cn/fsce/CN/Y2017/V11/I3/338
component CSA (mass %) Type III (mass %)
SiO 2
Al2O3
Fe2O3
CaO
MgO
Na2O
SO3
Loss on Ignition
Insoluble Residue
15.4
13.7
2.4
50.9
1.3
0.6
12.5
2.8
0.8
20.7
4.5
4.1
64.8
1.2
0.32
2.8
1.4
0.2
Tab.1  
sieve size/inch (mm) percentage passing by mass (%)
2 (20.8) 100
1½ (38.1) 95
¾ (19.05) 75
½ (12.7) 45
No. 4 (4.75) 5
Tab.2  
property coarse aggregate fine aggregate
dry rodded unit weight (kg/m 3) 2603 N/A
absorption (%) 1.4 1.8
specific gravity 2.60 2.55
fineness modulus N/A 2.6
Tab.3  
component 5 sacks of cement 6 sacks of cement 7 sacks of cement
W/C 0.45 0.50 0.55 0.45 0.50 0.55 0.45 0.50 0.55
cement content 470
(279)
470
(279)
470
(279)
564
(335)
564
(335)
564
(335)
658
(391)
658
(391)
658
(391)
coarse aggregate 1595
(947)
1595
(947)
1595
(947)
1595
(947)
1595
(947)
1595
(947)
1595
(947)
1595
(947)
1595(947)
fine aggregate 1663
(987)
1588
(942)
1513
(898)
1447
(859)
1357
(805)
1268
(753)
1420
(843)
1337
(793)
1022
(607)
water 211.5
(126)
235
(139)
258.5
(153)
253.8
(151)
282
(167)
310.2
(184)
296.1
(176)
329
(195)
361.9
(215)
HRWR
(oz)/(g)
90
(2551)
45
(1275)
0 90
(2551)
36
(1021)
0 90
(2551)
36
(1021)
0
retarder
(oz)/(g)
9.5
(269)
9.5
(269)
9.5
(269)
11
(105)
11
(105)
11
(105)
13
(143)
13
(143)
13
(143)
Tab.4  
component 6 sacks of cement 6.5 sacks of cement
cement 564 (335) 611 (361)
coarse aggregate 1595 (947) 1595 (947)
fine aggregate 1635 (966) 1543 (912)
water 253.8 (151) 275 (163)
HRWR(oz)/(g) 90 (2551) 90 (2551)
Tab.5  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
29 Won M. Improvements of testing procedures for concrete coefficient of thermal expansion. Transportation Research Record, 2005, 1919(1): 23–28
https://doi.org/10.3141/1919-03
30 Won M C, Kim  S M, Merritt  D, Mccullough B F . Horizontal Cracking and Pavement Distress in Portland Cement Concrete Pavement. International Air Transport Conference, 2002
31 Abrams D A. Design of Concrete Mixtures, Vol. 1: Structural Materials Research Laboratory. Lewis Institute, 1919
32 Yang H H. Pavements Analysis and Design. Prentice Hall, 2004
1 Chen D, Lin  H, Sun R . Field performance evaluations of partial-depth repairs. Construction & Building Materials, 2011, 25(3): 1369–1378
https://doi.org/10.1016/j.conbuildmat.2010.09.007
2 CalTran CDOT. Maintenance Technical Advisory Guide Volume II- Rigid pavement preservation (2nd Edition). Caltrans Division of Maintenance, 2007
3 ACPA. Guidelines for partial-depth spall repair. Concrete Paving Technology. American Concrete Pavement Association, 2007, 15p
4 Hou Y, Sun  F, Sun W ,  Guo M, Xing  C, Wu J . Quasi-brittle fracture modeling of preflawed bitumen using a diffuse interface model. Advances in Material Science and Engineering, 2016, 2016(6): 1–7
5 Hou Y, Wang  L, Yue P ,  Pauli T ,  Sun W. Modeling mode I cracking failure in asphalt binder by using nonconserved phase-field model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000874
6 Buch N, Van Dam  T J, Peterson  K, Sutter L . Evaluation of high-early strength PCC mixtures used in full depth repairs. Construction & Building Materials, 2008, 22(3): 162–174
https://doi.org/10.1016/j.conbuildmat.2006.09.006
7 Quillin K. Performance of belite–sulfoaluminate cements. Cement and Concrete Research, 2001, 31(9): 1341–1349
https://doi.org/10.1016/S0008-8846(01)00543-9
8 Glasser F P, Zhang  L. High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cement and Concrete Research, 2001, 31(12): 1881–1886
https://doi.org/10.1016/S0008-8846(01)00649-4
9 Odler I. Special Inorganic Cements. CRC Press, 2000
10 García-Maté M ,  De la Torre A G ,  León-Reina L ,  Aranda M A G ,  Santacruz I . Hydration studies of calcium sulfoaluminate cements blended with fly ash. Cement and Concrete Research, 2013, 54: 12–20
https://doi.org/10.1016/j.cemconres.2013.07.010
11 Cau Dit Coumes C ,  Courtois S ,  Peysson S ,  Ambroise J ,  Pera J. Calcium sulfoaluminate cement blended with OPC: a potential binder to encapsulate low-level radioactive slurries of complex chemistry. Cement and Concrete Research, 2009, 39(9): 740–747 doi:10.1016/j.cemconres.2009.05.016
12 Zhou Q, Milestone  N B, Hayes  M. An alternative to Portland Cement for waste encapsulation—The calcium sulfoaluminate cement system. Journal of Hazardous Materials, 2006, 136(1): 120–129
https://doi.org/10.1016/j.jhazmat.2005.11.038
13 Aranda M, De la Torre  A G. Sulfoaluminate cement. Eco-Efficient Concrete, 2013, 488–522
14 Alaoui A, Feraille  A, Steckmeyer A ,  Roy R L . New Cements for Sustainable Development. 12th International Congress on the Chemistry of Cement, 2007, 1–8
15 Gartner E. Industrially interesting approaches to “low-CO2” cements. Cement and Concrete Research, 2004, 34(9): 1489–1498
https://doi.org/10.1016/j.cemconres.2004.01.021
16 Popescu C D, Muntean  M, Sharp J H . Industrial trial production of low energy belite cement. Cement and Concrete Composites, 2003, 25(7): 689–693
https://doi.org/10.1016/S0958-9465(02)00097-5
17 Sharp J H, Lawrence  C D, Yang  R. Calcium sulfoaluminate cements-low-energy cements, special cements or what? Advances in Cement Research, 1999, 11(1): 3–13 doi:10.1680/adcr.1999.11.1.3
18 Hou Y, Wang  L, Yue P ,  Sun W. Fracture failure in crack interaction of asphalt binder by using a phase field approach. Materials and Structures, 2015, 48(9): 2997–3008
https://doi.org/10.1617/s11527-014-0372-x
19 Sun R J, Won  H, Won M C . The application and early-age behaviors of continuously reinforced bonded concrete overlay of distressed jointed concrete pavements. Journal of Testing and Evaluation, 2011, 39(5): 208–215
20 Thomas J J. The Science of Concrete. Report submitted to the Infrastructure Technology Institute for TEA-21, 2010
21 Hou Y, Wang  L, Pauli T ,  Sun W. Investigation of the asphalt self-healing mechanism using a phase-field model. Journal of Materials in Civil Engineering, 2015, 27: 040141183
22 Heath A C, Roesler  J R, Harvey  J T. Modeling longitudinal, corner and transverse cracking in jointed concrete pavements. International Journal of Pavement Engineering, 2003, 4(1): 51–58 doi:10.1080/102984303100016073393
23 Heath A C, Roesler  J R. Top-down cracking of rigid pavements constructed with fast-setting hydraulic cement concrete. Transportation Research Record, 2000,  1712: 3‒12 
24 Heath A C, Roesler  J R. Shrinkage and Thermal Cracking of Fast Setting Hydraulic Cement Concrete Pavements in Palmdale, California. Report for California Department of Transportation, 1999
25 Committee A. Standard Practice for Selecting Proportions for Normal, Heavyweight and Mass Concrete. Reported by ACI Committee 211, 1991, 1–91
26 ASTM. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM C39-03. West Conshohocken, 2003
27 ASTM. Standard Test Method for Linear Shrinkage and Coefficient Ecpansion of Chemical-resistant Mortars, Grouts, Monolithic Surfacings, and Polymer Concrete. ASTM C531-05. West Conshohocken: ASTM international, 2005
28 AASHTO: Standard Method for the Coefficient of Thermal Expansion of Hydraulic Cement Concrete. AASHTO TP60-00, 2000
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed