Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2017, Vol. 11 Issue (3): 286-292   https://doi.org/10.1007/s11709-017-0415-9
  本期目录
Numerical investigation and optimal design of fiber Bragg grating based wind pressure sensor
Xiangjie WANG1, Danhui DAN1(), Rong XIAO2, Xingfei YAN3
1. Department of Bridge Engineering, Tongji University, Shanghai 200092, China
2. Shanghai Municipal Engineering Design Institute (Group) Co. Ltd., Shanghai 200092, China
3. Shanghai Urban Construction Design Research Institute, Shanghai 200125, China
 全文: PDF(834 KB)   HTML
Abstract

A wind pressure sensor based on fiber Bragg grating (FBG) for engineering structure was investigated in this paper. We established a transaction model of wind pressure to strain and proposed a method of temperature compensation. By finite element analysis, the basic parameters of the sensor were optimized with the aim of maximum strain under the basic wind pressure proposed in relative design code in China taking geometrical non-linearity into consideration. The result shows that the wind pressure sensor we proposed is well performed and have good sensing properties, which means it is a technically feasible solution.

Key wordswind pressure measurement    wind pressure sensor    fiber Bragg grating    optimal design
收稿日期: 2016-10-30      出版日期: 2017-08-24
Corresponding Author(s): Danhui DAN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2017, 11(3): 286-292.
Xiangjie WANG, Danhui DAN, Rong XIAO, Xingfei YAN. Numerical investigation and optimal design of fiber Bragg grating based wind pressure sensor. Front. Struct. Civ. Eng., 2017, 11(3): 286-292.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0415-9
https://academic.hep.com.cn/fsce/CN/Y2017/V11/I3/286
Fig.1  
Fig.2  
Fig.3  
Fig.4  
design variables range of values optimized results
before modified after modified
span of spherical shell ( L, mm) 80–150 80 130
center angle of spherical shell ( α, 。) 45–90 45 65
thickness of spherical shell ( t, mm) 0.1–0.5 0.1 0.4
elastic modulus of spherical shell ( E, GPa) 70–130 70 70
Poisson’s radio ( μ) 0.2–0.4 0.3 0.3
Tab.1  
Fig.5  
Fig.6  
Fig.7  
mode order stability coefficient
q 1direction q 2 direction q 3 direction
before modified after modified before modified after modified before modified after modified
1 4.92 15.474 8.34 12.62 9.83 11.898
2 5.08 12.009 9.25 12.996 10.58 13.615
3 5.08 12.009 12.13 14.553 11.01 11.01
4 6.39 15.474 12.56 15.138 13.68 19.036
Tab.2  
Fig.8  
modal order 1 2 3 4
frequencies (Hz) 1008 1008 1125 1338
Tab.3  
Fig.9  
1 Davenport A G . How can we simplify and generalize wind loads? Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54/55: 657–669
https://doi.org/10.1016/0167-6105(94)00079-S
2 Simiu E, Scanlan  R H. Wind Effects on Structures. New Jersey: Wiley, 1996
3 Campbell S, Kwok  K C C, Hitchcock  P A, Tse  K T, Leung  H Y. Field measurements of natural periods of vibration and structural damping of wind-excited tall residential buildings. Wind and Structures, 2007, 5(5): 401–420
https://doi.org/10.12989/was.2007.10.5.401
4 Holmes J D. Effective static load distributions in wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(2): 91–109
https://doi.org/10.1016/S0167-6105(01)00164-7
5 Goswami I, Scanlan  R H, Jones  N P. Vortex-induced vibration of circular-cylinders. I: Experimental-data. Journal of Engineering Mechanics, 1993, 119(11): 2270–2287
6 Richardson G M ,  Surry D . Comparisons of wind-tunnel and full-scale surface pressure measurements on low-rise pitched-roof buildings. Journal of Wind Engineering and Industrial Aerodynamics, 1991, 38(2): 249–256
https://doi.org/10.1016/0167-6105(91)90045-X
7 Okada H, Ha  Y C. Comparison of wind tunnel and full-scale pressure measurement tests on the Texas Texh Building. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(1): 1601–1612
https://doi.org/10.1016/0167-6105(92)90375-K
8 Kasperski M. Specification of the design wind load based on wind tunnel experiments. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(4): 527–541
https://doi.org/10.1016/S0167-6105(02)00407-5
9 Murakami S. Current status and future trends in computational wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67: 3–34
https://doi.org/10.1016/S0167-6105(97)00230-4
10 Hsiao S V, Shemdim  O H. Measurements of wind velocity and pressure with a wave follower during MARSEN. Journal of Geophysical Research: Oceans, 1983,  88(C14): 9841–9849
11 Yoshida M, Kondo  K, Suzuki M . Fluctuating wind pressure measured with tubing system. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42(1): 987–998
https://doi.org/10.1016/0167-6105(92)90105-J
12 Abe M, Fujino  Y, Yanagihara M ,  Sato M. Monitoring of hakucho suspension bridge by ambient vibration measurement.  Optical Engineering (Redondo Beach, Calif.), 2000, 3995: 237–244
13 Apperley L W, Pitsis  N G. Model/full-scale pressure measurements on a grandstand. Journal of Wind Engineering and Industrial Aerodynamics, 1986, 23: 99–111
https://doi.org/10.1016/0167-6105(86)90035-8
14 Pitsis N G, Apperley  L W. Further full-scale and model pressure measurements on a cantilever grandstand. Journal of Wind Engineering and Industrial Aerodynamics, 1991, 38(2): 439–448
https://doi.org/10.1016/0167-6105(91)90061-Z
15 Yoshida M, Kondo  K, Suzuki M . Fluctuating wind pressure measured with tubing system. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 42(1): 987–998
https://doi.org/10.1016/0167-6105(92)90105-J
16 Engler R H, Klein  C, Trinks O . Pressure sensitive paint systems for pressure distribution measurements in wind tunnels and turbomachines. Measurement Science & Technology, 2000, 11(7): 1077–1085
https://doi.org/10.1088/0957-0233/11/7/320
17 Klein C, Engler  R H, Henne  U, Sachs W E . Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel. Experiments in Fluids, 2005, 39(2): 475–483
https://doi.org/10.1007/s00348-005-1010-8
18 Liu Z, Prevatt  D O, Aponte-Bermudez  L D, Gurley K R ,  Reinhold T A ,  Akins R E . Field measurement and wind tunnel simulation of hurricane wind loads on a single family dwelling. Engineering Structures, 2009, 31(10): 2265–2274
https://doi.org/10.1016/j.engstruct.2009.04.009
19 Dan D H, Xiao  R, Bai W L ,  Wen X L J . Study and design of fiber bragg grating based wind pressure sensor. International Journal of Distributed Sensor Networks, 2015, 11(6): 745346
https://doi.org/10.1155/2015/745346
20 Dan D H, Xiao  R, Bai W L ,  Cheng W ,  Zhao Y M . A fiber Bragg grating based wind pressure sensor. CN Patent, No. ZL201320012780.2, 2013
21 Dan D H, Xiao  R, Bai W L . A calibration device for wind pressure sensor. CN Patent, No. 201320013580.9, 2013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed