Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2018, Vol. 12 Issue (1): 3-15   https://doi.org/10.1007/s11709-017-0418-6
  本期目录
Estimation of relations among hysteretic response measures and design parameters for RC rectangular shear walls
A. ARAB(), Ma. R. BANAN, Mo. R. BANAN, S. FARHADI
Department of Civil and Environmental Engineering, School of Engineering, Shiraz University, Shiraz, Fars 71348-51156, Iran
 全文: PDF(3951 KB)   HTML
Abstract

Seismic design of RC structures requires estimation of structural member behavioral measures as functions of design parameters. In this study, the relations among cyclic behavioral measures and design parameters have been investigated for rectangular RC shear walls using numerical simulations calibrated based on the published laboratory tests. The OpenSEES numerical simulations modeling of plastic hinge hysteretic behavior of RC shear walls and estimation of empirical relations among wall hysteretic indices and design parameters are presented. The principal design parameters considered were wall dimensions, axial force, reinforcement ratios, and end-element design parameters. The estimated hysteretic response measures are wall effective stiffness, yield and ultimate curvatures, plastic moment capacity, yield and ultimate displacements, flexural shear capacity, and dissipated energy. Using results of numerous analyses, the empirical relations among wall cyclic behavioral measures and design parameters are developed and their accuracy is investigated.

Key wordsRC wall hysteretic measures    RC wall design parameters    empirical relations    numerical simulations    RC rectangular wall plastic hinge
收稿日期: 2016-05-07      出版日期: 2018-03-08
Corresponding Author(s): A. ARAB   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2018, 12(1): 3-15.
A. ARAB, Ma. R. BANAN, Mo. R. BANAN, S. FARHADI. Estimation of relations among hysteretic response measures and design parameters for RC rectangular shear walls. Front. Struct. Civ. Eng., 2018, 12(1): 3-15.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0418-6
https://academic.hep.com.cn/fsce/CN/Y2018/V12/I1/3
Fig.1  
Fig.2  
Fig.3  
behavioral measureerror (%)
maximum lateral strength1.6
effective stiffness6.7
dissipated energy7.5
Tab.1  
Fig.4  
Fig.5  
behavioral measureerror (%)
maximum lateral strength2.3
effective stiffness4.6
dissipated energy3.7
Tab.2  
test indexestimated errorspecimen design parameter
lw(mm)hw(mm)tw(mm)fc(MPa)fy(MPa)ρh(%)ρv(%)ρmin?(%)maximum lateral strengtheffective stiffnessdissipated energy
Wallace
(2004)
RW-212203.8810243.04260.04----0.0023.63.63.6
Oesterle
(1976)
B1232045009852.04731.110.310.2902.34.63.7
B3232045009847.04751.110.310.2907.25.23.5
B4232045009845.05081.110.310.2905.45.33.7
B5232045009845.04773.670.630.2902.34.12.4
Elnashai
(1993)
RW460012006036.95500.390.506.8606.58.16.2
RW560012006031.85500.310.5912.7504.12.34.1
RW660012006038.65500.310.506.8608.62.18.8
RW760012006032.05500.390.5912.7502.22.09.6
RW860012006045.85500.280.507.1401.76.75.1
RW960012006038.95500.560.507.1402.37.24.8
Riva
(2006)
full
scale
280015500----34.3414------------1.66.77.5
Tab.3  
design parametersvariation
wall length (Lw)2000–7000 mm
wall thickness (tw)300–800 mm
end element length ratio (LeL)0.1–0.2
end element thickness ratio (TeL)0.1–0.2
aspect ratio (hD)3–9
longitudinal rebar ratio (ρl)1%–4%
transverse rebar ratio (ρt)0.3%– 1%
minimum rebar ratio (ρt)0.25%–1%
axial force (PP0)4%–40%
loading patternuniform
triangular
Tab.4  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
parametertwLwA.RELρ1ρhρmin
Value300400030.10.040.0030.0025
Tab.5  
parametertwLwA.RELEtρhρmin
value300400030.10.0750.0030.0025
Tab.6  
behavioral measureparameterdefinition
yield curvatureϕycurvature when first rebar reach yield strain
ultimate curvatureϕucurvature when rupture criteria reach
effective stiffness(EIEIg)yield moment divided by yield curvature
member effective stiffnessKeffyield base shear divided by yield displacement
plastic momentMpmoment corresponding to idealized elastic-plastic curve
yield displacementΔydisplacement when first rebar reach yield strain
ultimate base shearVubase shear when rupture criteria reach
ultimate momentMumoment when rupture criteria reach
ultimate displacementΔudisplacement when rupture criteria reach
back bone energyBD. Energyenergy under idealized curve
dissipated energyD. Energyarea under hysteresis curve
equivalent momentMe0.8ρ1Lw
Tab.7  
ϕyϕu(EIEIg)KMpΔyMyVuMuΔuBD.Energy*D.Energy**
InsignificantELA.REtρhρhELA.RρhA.RELρmin?ρmin?
parametersA.RELρhρmin?ρmin?ρlρhρmin?ρhρl
ρlρlρmin?ρhρmin?ρmin?ρmin?
ρhρhρmin?
ρmin?
Tab.8  
Fig.10  
behavioral measurecorrelationR.M.S
minimum yield curvature0.880.004
maximum yield curvature0.660.012
minimum ultimate curvature0.510.035
maximum ultimate curvature0.610.024
minimum effective stiffness0.920.011
maximum effective stiffness0.940.009
minimum effective member stiffness0.990.012
maximum effective member stiffness0.990.013
minimum plastic moment0.970.014
maximum plastic moment0.970.009
yield displacement0.920.011
yield moment0.980.011
ultimate displacement0.970.009
ultimate base shear0.980.017
ultimate moment0.960.017
back bone dissipated energy0.930.110
dissipated energy0.930.110
Tab.9  
Fig.11  
Fig.12  
design parametermagnitude
lw2286 mm
tw152.4 mm
(LeL)0.077
(TeL)0.066
(hD)2.820
(ρl)0.0567%
(ρt)0.0081%
(ρmin)0.0080%
(PP0)0.005
Tab.10  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
1 Banan M R. Beyond R-factor: design theory for damage-based seismic design of RC buildings. In: Proceedings of a Turkey–Iran–US seismic workshop, 2010
2 ACI Committee 318. Building code requirements for structural concrete (ACI 318-11) and commentary. Farmington Hills, MI, USA: American Concrete Institute, 2011
3 FEMA-695. Quantification of building seismic performance factors. FEMA, 2009
4 Li B. Initial stiffness of reinforced concrete columns and walls. In: World Conference on Earthquake Engineering, Lisborn, 2012
5 Sakhayi S. Estimation of Relation Among Cyclic Behavioral Measures and Design Parameters for FRP-Jacketed Reinforced Concrete Columns. Dissertation for M.Sc degree. Civil and Environmental Engineering Department, Shiraz University, 2013
6 AASHTO. AASHTO guide specification for LRFD bridge design. Associated of State Highway and transportation officials, Washington D. C., 2010
7 Abazarnejad M. Determination of Data-Based Formula Relating Damage Index and Permanent Set to RC Column Design Parameters Using Cyclic Analysis. Dissertation for M.Sc degree. Civil and Environmental Engineering Department, Shiraz University, 2013
8 Khalifeh Mehrjardi H. Estimation of Relation between Damage Index and Column Design Parameters for Concrete Encased Column. Dissertation for M.Sc degree. Civil and Environmental Engineering Department, Shiraz University, 2011
9 Neuenhofer A, Filippou F C. Geometrically nonlinear flexibility-based frame finite element. Journal of Structural Engineering, 1998, 124(6): 704–711
https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(704)
10 Neuenhofer A, Filippou F C. Evaluation of nonlinear frame finite-element models. Journal of Structural Engineering, 1997, 123(7): 958–966
https://doi.org/10.1061/(ASCE)0733-9445(1997)123:7(958)
11 Mander J B, Priestley M J N, Park R. Theoretical stress-strain model for confined concrete. Journal of Structural Engineering, 1988, 114(8): 1804–1826
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
12 Karsan I D, Jirsa J O. Behavior of concrete under compressive loading. Journal of Structural Division, 1969, 95: 2543–2564
14 Sharifi A, Banan M R, Banan M R. A strain-consistent approach for determination of bounds of ductility damage index for different performance levels for seismic design of RC frame members. Engineering Structures, 2012, 37: 143–151
13 Dhakal R P, Maekawa K. Path-dependent cyclic stress–strain relationship of reinforcing bar including buckling. Engineering Structures, 2002, 14(11): 1383–1396
15 Oesterle R G, Fiorato A E, Johal L S, Carpenter J E, Russell H G, Coreley W G. Earthquake resistant structural walls-test of isolated walls. Natinal Science Foundation, 1976
16 Pilakoutas K, Elnashai A. Cyclic behaviour of reinforced concrete cantilever walls, Part I: experimental results. ACI Structural Journal, 1995, 92(3): 271–281
17 Thomsen J H, Wallace J W. Displacement-based design of reinforced concrete structural walls: an experimental investigation of walls with rectangular and T-shaped cross-section. National Science Foundation, 1995
18 Riva P, Meda A, Giuriani E. Cyclic behavior of a full scale RC structural wall. Engineering Structures, 2003, 25(6): 835–845
https://doi.org/10.1016/S0141-0296(03)00020-8
19 Mckenna F, Fenves G L. The open system for earthquake engineering simulation. University of California at berkeley, 2013
20 Priestley M J N, Seible F, Calvi G M. Seismic Design and Retrofit of Bridges. John Wiley, 1996
21 Paulay T, Priestley N. Seismic Design of Reinforced Concrete and Masonry Buildings. John Wiley, 1992
22 Tjhin T N, Aschheim M A, Wallace J W. Yield displacement estimates for displacement-based seismic design of ductile reinforced concrete structural wall buildings. In: Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, B.C., Canada, 2004
23 Aaleti S R. Behaviour of Rectangular Concrete Walls Subjected to Simulated Seismic Loading. Dissertation for PhD degree. Iowa State University, 2009
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed