Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2018, Vol. 12 Issue (3): 318-330   https://doi.org/10.1007/s11709-017-0420-z
  本期目录
Effect of RC wall on the development of plastic rotation in the beams of RC frame structures
Amar KAHIL1(), Aghiles NEKMOUCHE2, Said BOUKAIS1, Mohand HAMIZI1, Naceur Eddine HANNACHI1
1. Civil Engineering Department, Faculty of Construction Engineering, University Mouloud Mammeri, Tizi-ouzou, 15000, Algeria
2. Civil Engineering Department, Faculty of Technology, University Abderrahmane Mira – Bejaia ,06000 Algeria
 全文: PDF(1883 KB)   HTML
Abstract

The objective of this study is, to interpret the influence of reinforced concrete walls addition in reinforced concrete frame structures considering behavior laws that reflects the actual behavior of such structures, by means of Castem2000computer code (pushover analysis). A finite element model is proposed in this study, using the TAKEDA modified behavior model with Timoshenko beams elements. This model is validated initially on experimental model. Then the work has focused on the behavior of a RC frame with 3 levels and three bays to better visualize the behavior of plastic hinges. Once the plastic hinge control parameters are identified (plastic rotation, ultimate curvature), a strengthening by introduction of reinforced concrete walls (RC/wall) at the ends of the reinforced concrete frame (RC/frame) has been performed. The results show that these RC walls significantly improve the behavior, by a relocation of efforts towards the central part of the beams.

Key wordsRC/frame    RC/wall    moment curvature    plastic rotation    plastic hinge    pushover analysis    global models
收稿日期: 2016-10-19      出版日期: 2018-05-22
Corresponding Author(s): Amar KAHIL   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2018, 12(3): 318-330.
Amar KAHIL, Aghiles NEKMOUCHE, Said BOUKAIS, Mohand HAMIZI, Naceur Eddine HANNACHI. Effect of RC wall on the development of plastic rotation in the beams of RC frame structures. Front. Struct. Civ. Eng., 2018, 12(3): 318-330.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0420-z
https://academic.hep.com.cn/fsce/CN/Y2018/V12/I3/318
Fig.1  
Fig.2  
Fig.3  
Fig.4  
immediate occupancy (IO) life safety
(LS)
collapse prevention
(CP)
plastic rotation angle (radian) 0.005 0.01 0.02
Tab.1  
Fig.5  
damage level by
FEMA 273
left right
displacement
(m)
load
(kN)
displacement
(m)
load
(kN)
Beam 1 Immédiate Occupancy?(IO) 0.0238529 271.194 0.0254487 278.969
Life Safety(LS) 0.036635 300.284 0.0382336 301.981
Collapse Prévention (CP) 0.0813928 324.017 0.0861865 325.569
Beam 2 Immédiate Occupancy?(IO) 0.0302407 292.475 0.0286425 289.795
Life Safety(LS) 0.0430299 305.803 0.0414311 304.575
Collapse Prévention (CP) 0.0909798 327.004 0.0861865 325.569
experimental Collaps 0.08617623 327.716 0.08617623 327.716
Tab.2  
Fig.6  
Fig.7  
Fig.8  
level beams RC frame RC wall
location absolute values
of fu (m1)
location absolute values
of fu (m1)
Level 1 Beam 1 1 0.4137 1W 0.00409
2E 0.39732 2E 0.00318
Level 2 Beam 4 5 0.35388 5W 0.0051
6E 0.34522 6E 0.00459
Level 3 Beam 7 9 0.30619 9W 0.00437
10E 0.34522 10E 0.00215
Tab.3  
Fig.9  
level beams RC frame RC wall
location absolute values
of fu (m1)
location absolute values
of fu (m1)
Level 1 Beam 3 3W 0.3972 3W 0.00314
4 0.4136 4E 0.00403
Level 2 Beam 6 7W 0.3451 7W 0.00455
8 0.3538 8E 0.00505
Level 3 Beam 9 11W 0.1208 11W 0.00213
12 0.30613 12E 0.00438
Tab.4  
Fig.10  
level beams RC frame RC wall
location absolute values
of fu (m1)
location absolute values
of fu (m1)
Level 1 Beam 1 2W 0.3885 2W 0.00144
3E 0.3885 3E 0.00142
Level 2 Beam 4 6W 0.3379 6W 0.00288
7E 0.3378 7E 0.00287
Level 3 Beam 7 10W 0.0934 10W 0.00906
11E 0.0933 11E 0.00906
Tab.5  
level beams absolute values
of fu (m1)
values of qp calculated with finite element model (rad) qp according to FEMA 273
(rad)
damage level
by FEMA 273
Level 1 Beam 1 1-2a 1 0.4137 0.10573 >qp (CP) collapse prévention
2E 0.39732 0.09881
Beam 2 2b-3a 2W 0.38854 0.09638
3E 0.38852 0.09594
Beam 3 3b-4 3W 0.39729 0.09827
4 0.41365 0.10411
Level 2 Beam 4 5-6a 5 0.35388 0.07966
6E 0.34522 0.07763
Beam 5 6b-7a 6W 0.3379 0.07587
7E 0.33789 0.07598
Beam 6 7b-8 7W 0.34519 0.07743
8 0.35383 0.07915
Level 3 Beam 7 9-10a 9 0.30619 0.06668
10E 0.34522 0.07855
Beam 8 10b-11a 10W 0.0934 0.00897 q (IO)<qp<q (LS) immédiate occupancy
11E 0.09339 0.00882
Beam 9 11b-12 11W 0.12084 0.0154 q (LS)<qp<q (CP) life safety
12 0.30613 0.06568 qp>q (CP) collapse prévention
Tab.6  
Fig.11  
level Beams Absolute
values of
fu (m1)
values of qp calculated
with finite element
model (rad)
qp according to FEMA 273
(rad)
Damage level
by FEMA 273
Level 1 Beam 1 1-2a 1W 0.00409 0.00088 qp (B)< qp<qp (IO) Immediate
Occupancy
2E 0.00318 0.00037
Beam 2 2b-3a 2W 0.00144 0.00006
3E 0.00142 0.00006
Beam 3 3b-4 3W 0.00314 0.00036
4E 0.00403 0.0006
Level 2 Beam 4 5-6a 5W 0.0051 0.00095 qp (B)< qp<qp (IO) Immediate
Occupancy
6E 0.00459 0.00076
Beam 5 6b-7a 6W 0.00288 0.00036
7E 0.00287 0.00036
Beam 6 7b-8 7W 0.00455 0.00075
8E 0.00505 0.00091
Level 3 Beam 7 9-10a 9W 0.00437 0.00074 qp (B)< qp<qp (IO) Immediate
Occupancy
10E 0.00215 0.00016
Beam 8 10b-11a 10W 0.00906 0.00011
11E 0.00906 0.00003
Beam 9 11b-12 11W 0.00213 0.00013
12E 0.00438 0.00075
Tab.7  
Fig.12  
Fig.13  
1 Davidovici V. "Boumerdes earthquake- 21 May 2003". Preliminary report, Ministry of the Habitat, the Democratic and Popular Republic of Algeria, 8 June 2003, 92pp
2 Carvalho E Jr. Determination of the length of the plastic patella in confined posts with CFRPs. Dissertation for Master Degree. Quebec: Sherbrooke University, 2012
3 Kheyroddin A, Naderpour H. Plastic hinge rotation capacity of reinforced concrete beams. International Journal of Civil Engineerng, 2007, 5(1): 30–47
4 Brancherie D, Pham B H, Davenne L, Ibrahimbegovic A. Calcul de la charge limite ultime de portiques en béton armé; 10e Colloque National en Calcul des Structures 9‒13 Mai 2011, Presqu’île de Giens (Var)
5 Jukić M, Brank B, Ibrahimbegovic A. Failure analysis of reinforced concrete frames by beam finite element that combines damage, plasticity and embedded discontinuity. Engineering Structures, 2014, 75: 507–527
https://doi.org/10.1016/j.engstruct.2014.06.017
6 European Committee for Standardization. Eurocode 8. Design of Structures for Earthquake Resistance-Part 1: General Rules, Seismic Actions and Rules for Buildings, CEN, Brussels, Belgium, 1998
7 López-Almansa F, Alfarah B, Oller S. Numerical simulation of RC frame testing with damaged plasticity model. Comparison with Simplified Models, Second European Conference on Earthquake Engineering and Seismology, Istanbul, 25–29 August, 2014
8 Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures Timon Rabczuk. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
9 Rabczuk T, Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1‒4): 19–49
https://doi.org/10.1007/s10704-005-3075-z
10 Rabczuk T, Belytschko T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29‒30): 2777–2799
https://doi.org/10.1016/j.cma.2006.06.020
11 Rots J G. Computational Modeling of Concrete Failure. Dissertation for PhD degree. Delft University of Technology, 1988
12 Rabczuk T, Akkermann J, Eibl J. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5–6): 1327–1354
https://doi.org/10.1016/j.ijsolstr.2004.07.019
13 Kezmane A, Chiaia B, Kumpyak O, Maksimov V, Placidi L (2016). 3D Modeling of reinforced concrete slab with yielding supports subject to impact load. European Journal of Environmental and Civil Engineering, 21: 988–1025
14 Kezmane A, Boukais s, Hamizi M. Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material. Frontiers of Structural and Civil Engineering, 2016, 10(4): 445–455
15 Combescure D. DM2S report, SEMT/EMSI/RT/01-008/A, modeling of civil engineering structures under seismic loading using CAST3M 2000. 2001
16 Chen W F, Han D J.Plasticity for Structural Engineers. New York: Springer Verlag, 1988
17 Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
18 Takeda T, Sozen M A, Nielsen N N. Reinforced concrete response to simulated earthquakes. Journal of the Structural Division, 1970, 96(12): 2557–2573
19 Hines E M, Restrepo J I, Seible F. Force-displacement characterization of well confined bridge piers. ACI Structural Journal, 2004, 101(4): 537–548
20 Orakcal K, Wallace J W. Flexural modeling of reinforced concrete walls-experimental verification. ACI Structural Journal, 2006, 103(2): 196–206
21 Vulcano A, Bertero V V. Nonlinear Analysis of RC Structural Walls.In: Proceedings of the 8th European Conference on Earthquake Engineering, V. 3, Lisbon, Portugal, 1986, pp 6.5/1–6.5/8
22 CSI. SAP2000 V-8. Integrated finite element analysis and design of structures basic analysis reference manual. Berkeley (CA, USA): Computers and Structures Inc, 2002
23 Morand O. Application of the Global Elements to A Reinforced Concrete Structure. Dissertation for DE degree. University Paris VI, 1994
24 Open System for Earthquake Engineering Simulation (OpenSees). University of California, Berkeley,
25 Bai J, Ou J. Plastic Limit-State Design of Frame Structures Based on the Strong-Column Weak-Beam Failure Mechanism, the 5th World Conference on Earthquake Engineering, 24‒28 September, 2012, Lisbon, Portugal
26 Mehmet I, Hayri Baytan O. Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings. Engineering Structures, 2006, 28: 1494–1502
27 Nekmouche A, Hamizi M, Boukais S, Hannachi N E. Pushover analysis application for damage assessment in critical section of RC/ frame. The 6th International Conference on Mechanics and Materials in Design, Porto, 30‒31 July, 2015, Portugal
28 Chopra A K, Goel R K. A modal pushover analysis procedure for estimating seismic demands for buildings. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 561–582
https://doi.org/10.1002/eqe.144
29 Kim S, D’Amore E. Pushover analysis procedure in earthquake engineering. Earthquake Spectra, 1999, 15(3): 417–434
https://doi.org/10.1193/1.1586051
30 Sung Y C, Lin T K, Hsiao C C, Lai M C. Pushover analysis of reinforced concrete frames considering shear failure at beam-column joints. Earthq Eng & Eng Vib, 2013, 12: 373–383
31 Kato D, Otani S, Katsumata H, Aoyama H. Effect of wall base rotation on behaviour of reinforced concrete frame wall building. Bulletin of the New Zealand National Society for Earthquake Engineering, 1984, 17(2): 243–250
32 ATC. Seismic evaluation and retrofit of concrete buildings. ATC 40, Redwood City: Applied Technology Council, 1996
33 Vecchio F, Emara M. Shear deformations in reinforced concrete frames. ACI Structural Journal, 1992, 89: 46–56
34 Priestley M J N, Park R. Strength and ductility of concrete bridge columns under seismic loading. ACI Structural Journal, 1987, 84(1): 61–76
35 Faleiro J, Barbat A, Oller S. Plastic damage model for nonlinear reinforced concrete frames analysis. In: Oñate E, Owen D R J, eds. VIII International Conference on Computational Plasticity COMPLAS VIII, Barcelona, 2005
36 Aréde A. Seismic Assessment of Reinforced Concrete Frame Structures with A New Flexibility Based Element. Dissertation for PhD Degree. University Porto, 1997
37 Mortezaei A, Ronagh H R. Plastic hinge length of FRP strengthened reinforced concrete columns subjected to both far-fault and near-fault ground motions. Scientia Iranica, 2012, 19(6): 1365–1378
38 Priestley M, Calvi G, Kowalsky M. Displacement Based Seismic Design of Structure. New York: John Wiley & Sons, 2007, p721
39 Kheyroddin A, Mortezaei A. The effect of element size and plastic hinge characteristics on nonlinear analysis of RC frames. Iranian Journal of Science and Technology. Transaction B. Engineering, 2008, 32(B5): 451–470
40 Bentz E C. Sectional Analysis of Reinforced Concrete. Dissertation for PhD Degree. Department of Civil Engineering, University of Toronto, 2000
41 Baker A L L, Amarakone A M N. Inelastic hyperstatic frame analysis. ACI Structural Journal, 1964, SP-12: 85–142
42 Baker A L L. Ultimate Load Theory Applied to the Design of Reinforced and Prestressed Concrete Frames. London: Concrete Publications Ltd., 1956, p91
43 Bayrak O, Sheikh S A. Confinement reinforcement design considerations for ductile HSC columns. Journal of the Structural Division, 1998, 124(9): 999–1010
https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(999)
44 Berry M P, Lehman D E, Lowes L N. Lumped-plasticity models for performance simulation of bridge columns. ACI Structural Journal, 2008, 105(3): 270–279
45 Corley W G. Rotational capacity of reinforced concrete beams. Journal of the Structural Division, 1966, 92(ST5): 121–146
46 Herbert A, Sawyer J R. Design of concrete frames for two failure stages. ACI Structural Journal, 1964, SP-12: 405–437
47 Mattock A H. Rotational capacity of hinging regions in reinforced concrete beams. ACI Structural Journal, 1964, SP-12: 143–181
48 Mattock A H. Rotational capacity of hinging regions in reinforced concrete beams. Journal of the Structural Division, 1967, 93(ST2): 519–522
49 Park R, Priestley M J N, Gill W D. Ductility of square-confined concrete columns. Journal of the Structural Division, 1982, 108(ST4): 929–950
50 Paulay T, Priestley M J N. Seismic Design of Reinforced Concrete & Masonry Buildings. New York: John Wiley and Sons, 1992
51 Riva P, Cohn M Z. Engineering approach to nonlinear analysis of concrete structures. Journal of the Structural Division, 1990, 116(8): 2162–2186
https://doi.org/10.1061/(ASCE)0733-9445(1990)116:8(2162)
52 Sheikh S A, Khoury S S. Confined concrete columns with stubs. ACI Structural Journal, 1993, 90(4): 414–431
53 Sheikh S A, Shah D V, Khoury S S. Confinement of high-strength concrete columns. ACI Structural Journal, 1994, 91(1): 100–111
54 Bae S, Bayrak O. Plastic hinge length of reinforced concrete columns. ACI Structural Journal, 2008, 105(3): 290–300
55 FEMA. NEHRP Commentary on the Guidelines for Seismic Rehabilitation of Buildings, FEMA 273 Report, prepared by the Building Seismic Safety Council and the Applied Technology Council for the Federal Emergency Management Agency, Washington, D.C., 1997
56 Negro P, Verzeletti G. Effect of infills on the global behavior of R/C Frames: energy considerations from pseudodynamic tests. Earthquake Engineering & Structural Dynamics, 1996, 25(8): 753–773
https://doi.org/10.1002/(SICI)1096-9845(199608)25:8<753::AID-EQE578>3.0.CO;2-Q
57 Bolea O. The seismic behaviour of reinforced concrete frame structures with infill masonry in the Bucharest area. Energy Procedia, 2016, 85: 60–76
https://doi.org/10.1016/j.egypro.2015.12.275
58 Fahjan Y M, Kubin J, Tan M T. Nonlinear Analysis Methods for Reinforced Concrete Buildings with Shear walls. The 14th European Conference on Earthquake Engineering 2010: Ohrid, Republic of Macedonia, 30 August‒3 September, 2010, Vol. 2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed