Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2018, Vol. 12 Issue (2): 248-259   https://doi.org/10.1007/s11709-017-0422-x
  本期目录
A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate
Meng GUO1, Yiqiu TAN2, Linbing WANG3,4(), Yue HOU1
1. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
2. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
3. Joint USTB-Virginia Tech Lab on Multifunctional Materials, University of Science and Technology Beijing, Beijing 100083, China
4. Virginia Tech, Blacksburg, VA 24061, USA
 全文: PDF(656 KB)   HTML
Abstract

The interface between asphalt binder and mineral aggregate directly affects the service life of pavement because the defects and stress concentration occur more easily there. The interaction between asphalt binder and mineral aggregate is the main cause of forming the interface. This paper presents an extensive review on the test technologies and analysis methods of interfacial interaction, including molecular dynamics simulation, phase field approach, absorption tests, rheological methods and macro mechanical tests. All of the studies conducted on this topic clearly indicated that the interfacial interaction between asphalt binder and mineral aggregate is a physical-chemical process, and can be qualitatively characterized by microscopical technique (such as SEM and AFM), and also can be quantitatively evaluated by rheological methods and interfacial mechanical tests. Molecular dynamics simulation and phase field approach were also demonstrated to be effective methods to study the interfacial behavior and its mechanism.

Key wordsAsphalt binder    Mineral aggregate    Interfacial behavior    Multiscale
收稿日期: 2017-01-20      出版日期: 2018-04-23
Corresponding Author(s): Yiqiu TAN,Linbing WANG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2018, 12(2): 248-259.
Meng GUO, Yiqiu TAN, Linbing WANG, Yue HOU. A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate. Front. Struct. Civ. Eng., 2018, 12(2): 248-259.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0422-x
https://academic.hep.com.cn/fsce/CN/Y2018/V12/I2/248
Fig.1  
Fig.2  
Fig.3  
1 Anderson D A, Goetz W H. Mechanical Behavior and Reinforcement of Mineral Filler – Asphalt Mixtures. Proc. Association of Asphalt Paving Technologists, 1973, 42: 37–66
2 Dukatz EL, Anderson DA. The Effect of Various Fillers on the Mechanical Behavior of Asphaltic Concrete. Journal of the Association of Asphalt Paving Technologists, 1980, 49
3 Aigner E, Lackner R, Pichler C. Multiscale prediction of viscoelastic properties of asphalt concrete. Journal of Materials in Civil Engineering, 2009, 21(12): 771–780
https://doi.org/10.1061/(ASCE)0899-1561(2009)21:12(771)
4 Jennings P W, Pribanic J A, Desando M A. Binder characterization and evaluation by nuclear magnetic resonance spectroscopy. Strategic Highway Research Program, National Research Council, Washington DC, 1993: 3–12
5 Pauli A T, Grimes W, Huang S C. Surface energy studies of SHRP asphalts by AFM. In: The 225th National Meeting of the American-Chemical-Society, New Orleans, Louisiana, 2003, 225: 422
6 Zhang L, Greenfield M L. Molecular orientation in model asphalts using molecular simulation. Energy & Fuels, 2007, 21(2): 1102–1111
https://doi.org/10.1021/ef060449z
7 Zhang L, Greenfield M L. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation. Journal of Chemical Physics, 2007, 127(194502): 1–13
8 Zhang L, Greenfield M L. Effects of polymer modification on properties and microstructure of model asphalt systems. Energy & Fuels, 2008, 22(5): 3363–3375
https://doi.org/10.1021/ef700699p
9 Clancy T C, Mattice W L. Computer simulation of polyolefin interfaces. Computational and Theoretical Polymer Science, 1999, 9(3–4): 261–270
https://doi.org/10.1016/S1089-3156(99)00013-6
10 Deng M, Tan V B C, Tay T E. Atomistic modeling: Interfacial diffusion and adhesion of polycarbonate and silanes. Polymer, 2004, 45(18): 6399–6407
https://doi.org/10.1016/j.polymer.2004.06.055
11 Murgich J, Rodríguez M J, Izquierdo A, Carbognani L, Rogel E. Interatomic interactions in the adsorption of asphaltenes and resins on kaolinite calculated by molecular dynamics. Energy & Fuels, 1998, 12(2): 339–343
https://doi.org/10.1021/ef9701302
12 Norinaga K, Wargardalam V J, Takasugi S, Iino M, Matsukawa S. Measurement of self-diffusion coefficient of asphaltene in pyridine by pulsed field gradient spin-echo H-1 NMR. Energy & Fuels, 2001, 15(5): 1317–1318
https://doi.org/10.1021/ef0100597
13 Andrews A B, Guerra R E, Mullins O C, Sen P N. Diffusivity of asphaltene molecules by fluorescence correlation spectroscopy. Journal of Physical Chemistry A, 2006, 110(26): 8093–8097
https://doi.org/10.1021/jp062099n
14 He L, Li X, Wu G, Lin F, Sui H. Distribution of saturates, aromatics, resins and asphaltenes fractions in the bituminous layer of Athabasca oil sands. Energy & Fuels, 2013, 27(8): 4677–4683
https://doi.org/10.1021/ef400965m
15 Curtis C W, Ensley K, Epps J. Fundamental properties of asphalt-aggregate interactions including adhesion and absorption. SHRP-A-341 National Research Council, Washington, D.C. 1993: 501–527
16 Scott J A N. Adhesion and disbonding of asphalt used in highway construction and maintenance. Journal of the Association of Asphalt Paving Technologists, 1978, 47: 19–48
17 Fritschy R, Papirer E. Interactions between bitumen, its components and model fillers. Fuel, 1978, 57(11): 701–704
https://doi.org/10.1016/0016-2361(78)90025-X
18 Ardebrant H, Pugh R J. Surface acidity/basicity of road stone aggregates by adsorption from non-aqueous solutions. Colloids and Surfaces, 1991, 53(1): 101–116
https://doi.org/10.1016/0166-6622(91)80038-P
19 González G, Middea A. Asphaltenes adsorption by quartz and feldspar. Journal of Dispersion Science and Technology, 1987, 8(5–6): 525–548
https://doi.org/10.1080/01932698708943621
20 Acevedo S, Ranaudo M A, Escobar G. Adsorption of asphaltenes and resins on organic and inorganic substrates and their correlation with precipitation problems in production well tubing. Fuel, 1995, 74(4): 595–598
https://doi.org/10.1016/0016-2361(95)98363-J
21 Acevedo S, Castillo J, Fernandez A, Goncalves S, Ranaudo M A. A study of multilayer adsorption of asphaltenes on glass surfaces by photothermal surface deformation. Relation of this adsorption to aggregate formation in solution. Energy & Fuels, 1998, 12(2): 386–390
https://doi.org/10.1021/ef970152o
22 Abudu A, Goual L. Adsorption of crude oil on surfaces using quartz crystal microbalance with dissipation (QCM-D) under flow conditions. Energy & Fuels, 2009, 23(3): 1237–1248
https://doi.org/10.1021/ef800616x
23 Ekholm P, Blomberg E, Claesson P, Auflem I H, Sjöblom J, Kornfeldt A. A quartz crystal microbalance study of the adsorption of asphaltenes and resins onto a hydrophilic surface. Journal of Colloid and Interface Science, 2002, 247(2): 342–350
https://doi.org/10.1006/jcis.2002.8122
24 Goual L, Horváth-Szabó G, Masliyah J H, Xu Z. Adsorption of bituminous components at oil/water interfaces investigated by quartz crystal microbalance: Implications to the stability of water-in-oil emulsions. Langmuir, 2005, 21(18): 8278–8289
https://doi.org/10.1021/la050333f
25 Balabin R M, Syunyaev R Z. Petroleum resins adsorption onto quartz sand: Near infrared (NIR) spectroscopy study. Journal of Colloid and Interface Science, 2008, 318(2): 167–174
https://doi.org/10.1016/j.jcis.2007.10.045
26 Syunyaev R Z, Balabin R M, Akhatov I S, Safieva J O. Adsorption of petroleum asphaltenes onto reservoir rock sands studied by near-infrared (NIR) spectroscopy. Energy & Fuels, 2009, 23(3): 1230–1236
https://doi.org/10.1021/ef8006068
27 Labrador H, Fernandez Y, Tovar J, Muñoz R, Pereira J C. Ellipsometry study of the adsorption of asphaltene films on a glass surface. Energy & Fuels, 2007, 21(3): 1226–1230
https://doi.org/10.1021/ef060375r
28 Turgman-Cohen S, Smith M B, Fischer D A, Kilpatrick P K, Genzer J. Asphaltene adsorption onto self-assembled monolayers of mixed aromatic and aliphatic trichlorosilanes. Langmuir, 2009, 25(11): 6260–6269
https://doi.org/10.1021/la9000895
29 Saraji S, Goual L, Piri M. Adsorption of asphaltenes in porous media under flow conditions. Energy & Fuels, 2010, 24(11): 6009–6017
https://doi.org/10.1021/ef100881k
30 David A. Mechanical behavior of asphalt-mineral powder composites and asphalt-mineral interaction. Lafayette: Doctoral Dissertation of Purdue University, 1971: 166–170
31 Wu J T. Studies on Interaction Capability of Asphalt and Aggregate Based on Rheological Characteristics. Master’s Thesis, Harbin Institute of Technology. Harbin, 2009: 64–65
32 Tan Y Q, Guo M. Study on the Phase Behavior of Asphalt Mastic. Construction & Building Materials, 2013, 47: 311–317
https://doi.org/10.1016/j.conbuildmat.2013.05.064
33 Tan Y Q, Guo M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Construction & Building Materials, 2013, 47: 254–260
https://doi.org/10.1016/j.conbuildmat.2013.05.067
34 Tan Y Q, Guo M. Interfacial Thickness and Interaction between Asphalt and Mineral Fillers. Materials and Structures, 2014, 47(4): 605–614
https://doi.org/10.1617/s11527-013-0083-8
35 Guo M, Motamed A, Tan Y Q, Bhasin A. Investigating the Interaction between Asphalt Binder and Fresh and Simulated RAP Aggregate. Materials & Design, 2016, 105: 25–33
https://doi.org/10.1016/j.matdes.2016.04.102
36 Guo M, Tan Y Q, Zhou S W. Multiscale Test Research on Interfacial Adhesion Property of Cold Mix Asphalt. Construction & Building Materials, 2014, 68: 769–776
https://doi.org/10.1016/j.conbuildmat.2014.06.031
37 Zhang J P, Pei J Z, Li Y W. Research on Interaction between Asphalt and Filler based on DSR Test. Advanced Materials Research, 2013, 723: 480–487
https://doi.org/10.4028/www.scientific.net/AMR.723.480
38 Zhang J P, Fan Z P, Hu D L, Hu Z, Pei J Z, Kong W C. Evaluation of asphalt–aggregate interaction based on the rheological properties. International Journal of Pavement Engineering, 2016: 1–7
https://doi.org/10.1080/10298436.2016.1199868
39 Miljković M, Radenberg M. Fracture Behaviour of Bitumen Emulsion Mortar Mixtures. Construction & Building Materials, 2014, 62(15): 126–134
https://doi.org/10.1016/j.conbuildmat.2014.03.034
40 Shao X Z, Tan Y Q, Shao M H, Sun L J. Research on Microstructure of Asphalt Mortar. Highway, 2003, 12: 105–108
41 Tan Y Q, Guo M. Micro- and Nano-characteration of Interaction between Asphalt and Filler. Journal of Testing and Evaluation, 2014, 42(5): 1089–1097
https://doi.org/10.1520/JTE20130253
42 Wang Z J, Sha A M. Micro hardness of interface between cement asphalt emulsion mastics and aggregates. Materials and Structures, 2010, 43(4): 453–461
https://doi.org/10.1617/s11527-009-9502-2
43 Khattak M J, Baladi G Y, Drzal L T. Low temperature binder-aggregate adhesion and mechanistic characteristics of polymer modified asphalt mixtures. Journal of Materials in Civil Engineering, 2007, 19(5): 411–422
https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(411)
44 Shinhe H, Turner T F, Pauli A T. Evaluation of different techniques for adhesive properties of asphalt-filler systems at interfacial region. Symposium on Advances in Adhesives, Adhesion Science and Testing, Washington D C: ASTM, 2005: 114–128
45 Richardson C. The theory of the perfect sheet asphalt surface. Journal of Industrial and Engineering Chemistry, 1915, 7(6): 463–465
https://doi.org/10.1021/ie50078a002
46 Miller J S, Traxler R N. Some of the fundamental physical characteristics of mineral filler intended for asphalt paving mixtures. Journal of the Association of Asphalt Paving Technologists, 1932, 3: 53–63
47 Mitchell J G, Lee A R. The evaluation of fillers for tar and other bituminous surfacing. Journal of the Society of Chemical Industry, 1939, 58: 299–306
48 Rigden P J. The use of fillers in bituminous road surfacings: A study of filler binder systems in relation to filler characteristics. Journal of the Society of Chemical Industry, 1947, 66(9): 299–309
https://doi.org/10.1002/jctb.5000660902
49 Shashidhar N, Romero P. Factors affecting the stiffening potential of mineral fillers. Transportation Research Record, 1998, 1638: 94–100
https://doi.org/10.3141/1638-11
50 Kallas B F, Puzinauskas V P. A study of mineral fillers in asphalt paving mixtures. Journal of the Association of Asphalt Paving Technologists, 1961, 10: 493–528
51 Tunnicliff D G. A review of mineral filler. Journal of the Association of Asphalt Paving Technologists, 1962, 31: 118–150
52 Heukelom W, Wijga P W O. Viscosity of dispersions as governed by concentration and rate of shear. Journal of the Association of Asphalt Paving Technologists, 1971, 40: 418–437
53 Einstein A. Investigations on the theory of the Brownian movement, edited with notes by R. Furth [M]. United States of America: Dover publications, 1956: 1–19
54 Thomas D G. Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. Journal of Colloid Science, 1965, 20(3): 267–277
https://doi.org/10.1016/0095-8522(65)90016-4
55 Shenoy A V. Rheology of filled polymer systems, Netherlands: Springer 1999: 112–135
56 Mooney M. The viscosity of a concentrated suspension of spherical particles. Journal of Colloid Science, 1951, 6(2): 162–170
https://doi.org/10.1016/0095-8522(51)90036-0
57 Maron S H, Pierce P E. Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. Journal of Colloid Science, 1956, 11(1): 80–95
https://doi.org/10.1016/0095-8522(56)90023-X
58 Halpin J C. Effects of environmental factors on composite materials. Technical report AFML-TR-67-423, 1969: 1–13
59 Ju J W, Chen T M. Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mechanica, 1994, 103(1–4): 123–144
https://doi.org/10.1007/BF01180222
60 Shashidhar N, Shenoy A. On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics. Mechanics of Materials, 2002, 34(10): 657–669
https://doi.org/10.1016/S0167-6636(02)00166-7
61 Christensen R M, Lo K H. Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 1979, 27(4): 315–330
https://doi.org/10.1016/0022-5096(79)90032-2
62 Christensen R M, Lo K H. Erratum: Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 1986, 34(6): 639
https://doi.org/10.1016/0022-5096(86)90043-8
63 Buttlar WG, Bozkurt D, Al-Khateeb GG, et al.Understanding asphalt mastic behavior through micromechanics. Transportation Research Record: Journal of the Transportation Research Board, 1999, 1681: 157–169
64 Lipatov Y S, Rosovitsky V F, Babich B V, Kvitka N A. On shift and resolution of relaxation maxima in two phase polymeric systems. Journal of Applied Polymer Science, 1980, 25(6): 1029–1037
https://doi.org/10.1002/app.1980.070250605
65 Zhu X Y, Yang Z X, Guo X M, Chen W Q. Modulus prediction of asphalt concrete with imperfect bonding between aggregate-asphalt mastic. Composites. Part B, Engineering, 2011, 42(6): 1404–1411
https://doi.org/10.1016/j.compositesb.2011.05.023
66 Gong X B. Micro-Meso Mechanical Behavior of Asphalt Mixtures Based on Locally Effective Properties. Master’s Thesis, Harbin Institute of Technology. Harbin, 2012: 68–69
67 Ribeiro R C, Correia J C G, Seidl P R. The influence of different minerals on the mechanical resistance of asphalt mixtures. Journal of Petroleum Science Engineering, 2009, 65(3–4): 171–174
https://doi.org/10.1016/j.petrol.2008.12.025
68 Mallick R B, Kandhal P S, Bradbury R L. Using warm-mix asphalt technology to incorporate high percentage of reclaimed asphalt pavement material in asphalt mixtures. Transportation Research Record, 2008, 2051: 71–79
https://doi.org/10.3141/2051-09
69 Shu X, Huang B S, Shrum E D, Jia X. Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP. Construction & Building Materials, 2012, 35: 125–130
https://doi.org/10.1016/j.conbuildmat.2012.02.095
70 Guo N S, You Z P, Zhao Y H, Tan Y, Diab A. Laboratory performance of warm mix asphalt containing recycled asphalt mixtures. Construction & Building Materials, 2014, 64: 141–149
https://doi.org/10.1016/j.conbuildmat.2014.04.002
71 Zhao S, Huang B S, Shu X, Woods M. Comparative evaluation of warm mix asphalt containing high percentages of reclaimed asphalt pavement. Construction & Building Materials, 2013, 44: 92–100
https://doi.org/10.1016/j.conbuildmat.2013.03.010
72 Hill B, Behnia B, Buttlar W G, Reis H. Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement through mechanical performance tests and an acoustic emission approach. Journal of Materials in Civil Engineering, 2013, 25(12): 1887– 1897
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000757
73 Mohajeri M, Molenaar A A A, Van de Ven M F C. Experimental study into the fundamental understanding of blending between reclaimed asphalt binder and virgin bitumen using nanoindentation and nano-computed tomography. Road Materials and Pavement Design, 2014, 15(2): 372–384
https://doi.org/10.1080/14680629.2014.883322
74 Kuhn C, Muller R. A continuum phase field model for fracture. Engineering Fracture Mechanics, 2010, 77(18): 3625–3634
https://doi.org/10.1016/j.engfracmech.2010.08.009
75 Henry H, Levine H. Dynamic Instabilities of Fracture under Biaxial Strain Using a Phase Field Model. Physical Review Letters, 2004, 93(10): 105504
https://doi.org/10.1103/PhysRevLett.93.105504
76 Karma A, Lobkovsky A. Unsteady crack motion and branching in a phase-field model of brittle fracture. Physical Review Letters, 2004, 92(24): 245510
https://doi.org/10.1103/PhysRevLett.92.245510
77 Eastgate L, Sethna J, Rauscher M, Cretegny T, Chen C S, Myers C R. Fracture in mode I using a conserved phase-field model. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2002, 65(3): 036117
https://doi.org/10.1103/PhysRevE.65.036117
78 Schlüter A, Willenbucher A, Kuhn C, Muller R. Phase field approximation of dynamic brittle fracture. Computational Mechanics, 2014, 54(5): 1141–1161
https://doi.org/10.1007/s00466-014-1045-x
79 Takaishi T, Kimura M. Phase field model for Mode III crack growth in two dimensional elasticity. Kybernetika, 2009, 45(4): 605–614
80 Schänzel L, Hofacker M, Miehe C. Phase Field Modeling of Crack Propagation at Large Strains with Application to Rubbery Polymers. Proceedings in Applied Mathematics and Mechanics, 2011, 11(1): 429–430
https://doi.org/10.1002/pamm.201110206
81 Wang Y, Li J. Phase field modeling of defects and deformation. Acta Materialia, 2010, 58(4): 1212–1235
https://doi.org/10.1016/j.actamat.2009.10.041
82 Song Y C, Soh A K, Ni Y. Phase field simulation of crack tip domain switching in ferroelectrics. Journal of Physics. D, Applied Physics, 2007, 40(4): 1175–1182
https://doi.org/10.1088/0022-3727/40/4/040
83 Levitas V, Idesman A, Palakala A. Phase-field modeling of fracture in liquid. Journal of Applied Physics, 2011, 110(3): 033531
https://doi.org/10.1063/1.3619807
84 Xu H, Matkar R, Kyu T. Phase-field modeling on morphological landscape of isotactic polystyrene single crystals. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(1): 011804
https://doi.org/10.1103/PhysRevE.72.011804
85 Abdollahi A, Arias I. Phase-field simulation of anistropic crack propagation in ferroelectric single crystals: effect of microstructure on the fracture process. Modelling and Simulation in Materials Science and Engineering, 2011, 19(7): 074010
https://doi.org/10.1088/0965-0393/19/7/074010
86 Hou Y, Wang L, Yue P, Pauli T, Sun W. Modeling Mode I Cracking Failure in Asphalt Binder by Using Nonconserved Phase-Field Model. Journal of Materials in Civil Engineering, 2014, 26(4): 684–691
https://doi.org/10.1061/(ASCE)MT.1943-5533.0000874
87 Hou Y, Yue P, Xin Q, Pauli T, Sun W, Wang L. Fracture failure of asphalt binder in mixed mode (Modes I and II) by using phase-field model. Road Materials and Pavement Design, 2014, 15(1): 167– 181
https://doi.org/10.1080/14680629.2013.866155
88 Hou Y, Wang L, Pauli T, Sun W. Investigation of the Asphalt Self-healing Mechanism Using a Phase-Field Model. Journal of Materials in Civil Engineering, 2015, 27(3): 04014118
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001047
89 Hou Y, Wang L, Yue P, Sun W. Fracture Failure in Crack interaction of Asphalt Binder by Using a Phase Field Approach. Materials and Structures, 2015, 48(9): 2997–3008
https://doi.org/10.1617/s11527-014-0372-x
90 Hou Y, Sun W, Huang Y, Ayatollahi M, Wang L, Zhang J. Diffuse-Interface Model to Investigate the Asphalt Concrete Cracking Subjected to Shear Loading at a Low Temperature. Journal of Cold Regions Engineering, 2016, 04016009
https://doi.org/10.1061/(ASCE)CR.1943-5495.0000116
91 Hou Y, Sun W, Das P, Song X, Wang L, Ge Z, Huang Y. Coupled Navier-Stokes Phase-Field Model to Evaluate the Microscopic Phase Separation in Asphalt Binder under Thermal Loading. Journal of Materials in Civil Engineering, 2016, 28(10): 04016100
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001581
92 Hou Y, Sun F, Sun W, Guo M, Xing C, Wu J. Quasi-brittle Fracture Modeling of PreFlawed Bitumen Using a Diffuse Interface Model. Advances in Materials Science and Engineering, 2016, 2016: 8751646
https://doi.org/10.1155/2016/8751646
93 Hou Y, Huang Y, Sun F, Guo M. Fractal Analysis on Asphalt Mixture Using a Two-Dimensional Imaging Technique. Advances in Materials Science and Engineering, 2016, 2016: 8931295
https://doi.org/10.1155/2016/8931295
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed