Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2018, Vol. 12 Issue (4): 548-557   https://doi.org/10.1007/s11709-017-0434-6
  本期目录
Peridynamics versus XFEM: a comparative study for quasi-static crack problems
Jinhai ZHAO1, Hesheng TANG1,2(), Songtao XUE1
1. Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai 200092, China
2. State Key Laboratory of Disaster Prevention in Civil Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(1958 KB)   HTML
Abstract

Peridynamics (PD) is a nonlocal continuum theory based on integro-differential equations without spatial derivatives. The fracture criterion is implicitly incorporated in the PD theory and fracture is a natural outcome of the simulation. However, capturing of complex mixed-mode crack patterns has been proven to be difficult with PD. On the other hand, the extended finite element method (XFEM) is one of the most popular methods for fracture which allows crack propagation with minimal remeshing. It requires a fracture criterion which is independent of the underlying discretization though a certain refinement is needed in order to obtain suitable results. This article presents a comparative study between XFEM and PD. Therefore, two examples are studied. The first example is crack propagation in a double notched specimen under uniaxial tension with different crack spacings in loading direction. The second example is the specimens with two center cracks. The results show that PD as well as XFEM are well suited to capture this type of behaviour.

Key wordsXFEM    peridynamic    bilateral crack    parallel double cracks    nonlocal theory
收稿日期: 2017-03-05      出版日期: 2018-11-20
Corresponding Author(s): Hesheng TANG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2018, 12(4): 548-557.
Jinhai ZHAO, Hesheng TANG, Songtao XUE. Peridynamics versus XFEM: a comparative study for quasi-static crack problems. Front. Struct. Civ. Eng., 2018, 12(4): 548-557.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0434-6
https://academic.hep.com.cn/fsce/CN/Y2018/V12/I4/548
Fig.1  
Fig.2  
Fig.3  
left crack size right crack size crack longitudinal offset distance (specimen label)
10 10 0 (10-00) 10 (10-10) 20 (10-20)
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
1 Areias P, Rabczuk T, Msekh M. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350
https://doi.org/10.1016/j.cma.2016.01.020
2 Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143
https://doi.org/10.1016/j.engfracmech.2015.10.042
3 Areias P M A, Rabczuk T, Camanho P P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63
https://doi.org/10.1016/j.tafmec.2014.06.006
4 Areias P, Rabczuk T, Dias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137
https://doi.org/10.1016/j.engfracmech.2013.06.006
5 Areias P, Rabczuk T, Camanho P P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947
https://doi.org/10.1007/s00466-013-0855-6
6 Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotation. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
https://doi.org/10.1002/nme.4477
7 Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
8 Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, 2000, 48(12): 1741–1760
https://doi.org/10.1002/1097-0207(20000830)48:12<1741::AID-NME956>3.0.CO;2-L
9 Nagashima T, Omoto Y, Tani S. Stress intensity factor analysis of interface cracks using X-FEM. International Journal for Numerical Methods in Engineering, 2003, 56(8): 1151–1173
https://doi.org/10.1002/nme.604
10 Fang X, Jin F, Wang J. Cohesive crack model based on extended finite element method. Journal of Tsinghua University, 2007, 47(3): 344–347
11 Fang X, Jin F, Wang J. Seismic fracture simulation of the Koyna gravity dam using an extended finite element method. Journal of Tsinghua University, 2008, 48(12): 2065–2069
12 Song J H, Areias P M A, Belytschko T. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67(6): 868–893
https://doi.org/10.1002/nme.1652
13 Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering, 2004, 193(33–35): 3523–3540
https://doi.org/10.1016/j.cma.2003.12.041
14 Areias P M A, Belytschko T.A comment on the article “A finite element method for simulation of strong and weak discontinuities in solid mechanics” by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523–3540]. Computer Methods in Applied Mechanics & Engineering, 2006, 195: 1275–1276
15 Rabczuk T, Zi G, Gerstenberger A, Wall W A. A new crack tip element for the phantom node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599
https://doi.org/10.1002/nme.2273
16 Chau-Dinh T, Zi G, Lee P S, Rabczuk T, Song J H. Phantom-node method for shell models with arbitrary cracks. Computers & Structures, 2012, 92: 242–256
https://doi.org/10.1016/j.compstruc.2011.10.021
17 Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57
https://doi.org/10.1007/s00466-013-0891-2
18 Rabczuk T, Areias P M A. A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis. Cmes Computer Modeling in Engineering & Ences, 2006, 16(2): 115–130
19 Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495
https://doi.org/10.1007/s00466-006-0122-1
20 Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for nonlinear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
https://doi.org/10.1002/nme.2013
21 Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760
https://doi.org/10.1007/s00466-006-0067-4
22 Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411
https://doi.org/10.1016/j.compstruc.2008.08.010
23 Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
24 Rabczuk T, Gracie R, Song J H, Ted B. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71
https://doi.org/10.1002/nme.2670
25 Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960
https://doi.org/10.1016/j.engfracmech.2007.05.010
26 Zhuang X, Augarde C, Mathisen K. Fracture modelling using meshless methods and level sets in 3D: framework and modelling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998
https://doi.org/10.1002/nme.4365
27 Zhuang X, Zhu H, Augarde C. An improved meshless Shepard and least square method possessing the delta property and requiring no singular weight function. Computational Mechanics, 2014, 53(2): 343–357
https://doi.org/10.1007/s00466-013-0912-1
28 Zhuang X, Cai Y, Augarde C. A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields. Theoretical and Applied Fracture Mechanics, 2014, 69: 118–125
https://doi.org/10.1016/j.tafmec.2013.12.003
29 Rabczuk T, Belytschko T. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
30 Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799
https://doi.org/10.1016/j.cma.2006.06.020
31 Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
32 Ganzenmüller G C, Hiermaier S, May M. On the similarity of meshless discretizations of peridynamics and Smoothed Particle Hydrodynamics. Computers & Structures, 2015, 150: 71–78
https://doi.org/10.1016/j.compstruc.2014.12.011
33 Bessa M A, Foster J T, Belytschko T, Liu W K. A meshfree unification: reproducing kernel peridynamics. Computational Mechanics, 2014, 53(6): 1251–1264
https://doi.org/10.1007/s00466-013-0969-x
34 Silling S A. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209
https://doi.org/10.1016/S0022-5096(99)00029-0
35 Silling S A, Zimmermann M, Abeyaratne R. Deformation of a peridynamic bar. Journal of Elasticity, 2003, 73(1–3): 173–190
https://doi.org/10.1023/B:ELAS.0000029931.03844.4f
36 Silling S A, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 2005, 83(17–18): 1526–1535
https://doi.org/10.1016/j.compstruc.2004.11.026
37 Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108(12): 1451–1476
https://doi.org/10.1002/nme.5257
38 Silling S A, Bobaru F. Peridynamic modeling of membranes and fibers. International Journal of Non-linear Mechanics, 2005, 40(2–3): 395–409
https://doi.org/10.1016/j.ijnonlinmec.2004.08.004
39 Silani M, Talebi H, Hamouda A S, Rabczuk T. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23
https://doi.org/10.1016/j.jocs.2015.11.007
40 Talebi H, Silani M, Rabczuk T. Concurrent multiscale modelling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92
https://doi.org/10.1016/j.advengsoft.2014.09.016
41 Silani M, Talebi H, Ziaei-Rad S, Hamouda A M, Zi G, Rabczuk T. A three dimensional extended arlequin method for dynamic fracture. Computational Materials Science, 2015, 96: 425–431
https://doi.org/10.1016/j.commatsci.2014.07.039
42 Silani M, Ziaei-Rad S, Talebi H, Rabczuk T. A semi-concurrent multiscale approach for modeling damage in nanocomposites. Theoretical and Applied Fracture Mechanics, 2014, 74: 30–38
https://doi.org/10.1016/j.tafmec.2014.06.009
43 Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. A computational library for multiscale modelling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071
https://doi.org/10.1007/s00466-013-0948-2
44 Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541
https://doi.org/10.1615/IntJMultCompEng.2013005838
45 Yang S W, Budarapu P R, Mahapatra D R, Bordas S P A, Zi G, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96: 382–395
https://doi.org/10.1016/j.commatsci.2014.08.054
46 Budarapu P, Gracie R, Bordas S, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148
https://doi.org/10.1007/s00466-013-0952-6
47 Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143
https://doi.org/10.1016/j.tafmec.2013.12.004
48 Costa T, Bond S, Littlewood D, Moore S. Peridynamic Multiscale Finite Element Methods. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States), 2015, SAND2015–10472
49 Jung J, Seok J. Fatigue crack growth analysis in layered heterogeneous material systems using peridynamic approach. Composite Structures, 2016, 152: 403–407
https://doi.org/10.1016/j.compstruct.2016.05.077
50 Shen F, Zhang Q, Huang D. Damage and failure process of concrete structure under uni-axial tension based on peridynamics modeling. Chin J Comput Mech, 2013, 30: 79–83
51 Gu X, Zhou X P. The numerical simulation of tensile plate with circular hole using peridynamic theory. Chin J Comput Mech, 2015, 36(5): 376–383
52 Cheng Z, Liu J. Fracture analysis of functionally graded materials under impact loading based on peridynamics. Chinese Journal of Applied Mechanics, 2016, (4): 634–639
53 Zhou X, Shou Y. Numerical simulation of failure of rock-like material subjected to compressive loads using improved peridynamic method. International Journal of Geomechanics, 2017, 17(3): 04016086
https://doi.org/10.1061/(ASCE)GM.1943-5622.0000778
54 Ren H, Zhuang X, Rabczuk T. A new peridynamic formulation with shear deformation for elastic solid. Journal of Micromechanics and Molecular Physics, 2016, 01(02): 1650009
https://doi.org/10.1142/S2424913016500090
55 Zeng S. Bilateral crack growth behavior of Q345 steel under uniaxial tensile load. Dissertation for master degree. Guangxi University, 2014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed