Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2018, Vol. 12 Issue (4): 461-473   https://doi.org/10.1007/s11709-017-0441-7
  本期目录
Three-scale stochastic homogenization of elastic recycled aggregate concrete based on nano-indentation digital images
Chen WANG, Yuching WU(), Jianzhuang XIAO
Department of Structural Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(3524 KB)   HTML
Abstract

In this paper, three-scale stochastic elastic finite element analyses are made for recycled aggregate concrete (RAC) based on nano-indentation digital images. The elastic property of RAC contains uncertainties across scales. It has both theoretical and practical values to model and predict its mechanical performance. Based on homogenization theory, effective stochastic elastic moduli of RAC at three different scales are obtained using moving window technique, nano-indentation digital images, and Monte-Carlo method. It involves the generation of a large number of random realizations of microstructure geometry based on different volume fraction of the inclusions and other parameters. The mean value, coefficient of variation and probability distribution of the effective elastic moduli are computed considering the material multiscale structure. The microscopic randomness is taken into account, and correlations of RAC among five phases are investigated. The effective elastic properties are used to obtain the global behavior of a composite structure. It is indicated that the response variability can be considerably affected by replacement percentage of recycled aggregates.

Key wordsRAC    nano-indentation digital image    multiscale    microscopic randomness    homogenization
收稿日期: 2017-01-20      出版日期: 2018-11-20
Corresponding Author(s): Yuching WU   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2018, 12(4): 461-473.
Chen WANG, Yuching WU, Jianzhuang XIAO. Three-scale stochastic homogenization of elastic recycled aggregate concrete based on nano-indentation digital images. Front. Struct. Civ. Eng., 2018, 12(4): 461-473.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0441-7
https://academic.hep.com.cn/fsce/CN/Y2018/V12/I4/461
Fig.1  
Fig.2  
Fig.3  
Fig.4  
micro porosityLD C-S-HHD C-S-Helse
range<7 GPa7 GPa?20 GPa20 GPa?35 GPa>35 GPa
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
mortar sizesmean
(GPa)
standard deviation
(GPa)
COV
old mortar (20 µm × 20 µm)30.5877.1930.2352
new mortar (20 µm × 20 µm)29.89110.7440.3595
old mortar (1 mm × 1 mm)29.5000.7200.0244
new mortar (1 mm × 1 mm)28.8001.0510.0365
Tab.2  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
replacement percentages0%25%50%75%100%
lognormal0.996370.984480.973800.990330.98058
normal0.994310.978140.976370.944200.95619
weibull0.903470.890030.885490.887020.90732
Tab.3  
Fig.15  
Fig.16  
Fig.17  
1 Xiao J, Sun C, Jiang X. Flexural behavior of recycled aggregate concrete graded slabs. Structural Concrete, 2014, 16(2): 249–261
https://doi.org/10.1002/suco.201400008
2 Li T, Xiao J, Zhu C, Zhong Z. Experimental study on mechanical behaviors of concrete with large-size recycled coarse aggregate. Construction & Building Materials, 2016, 120: 321–328
https://doi.org/10.1016/j.conbuildmat.2016.05.110
3 Waseem S A, Singh B. Shear transfer strength of normal and high-strength recycled aggregate concrete—An experimental investigation. Construction & Building Materials, 2016, 125: 29–40
https://doi.org/10.1016/j.conbuildmat.2016.08.022
4 Vinay Kumar B M, Ananthan H, Balaji K V A. Experimental studies on utilization of coarse and finer fractions of recycled concrete aggregates in self compacting concrete mixes. Journal of Building Engineering, 2017, 9: 100–108
https://doi.org/10.1016/j.jobe.2016.11.013
5 Xiao J, Li W, Liu Q. Meso-level numerical simulation on mechanical properties of modeled recycled concrete under uniaxial compression. Journal of Tongji University—Natural Science, 2011, 39(6): 791–797
6 Li W, Xiao J, Yuan J. Stress distribution characteristics of modeled recycled aggregate concrete under uniaxial compression. Journal of Tongji University—Natural Science, 2012, 40(6): 906–913
7 Peng Y, Chu H, Pu J. Numerical simulation of recycled concrete using convex aggregate model and base force element method. Advances in Materials Science and Engineering, 2016, (1): 1–10
8 Hughes J J, Trtik P. Micro-mechanical properties of cement paste measured by depth-sensing nanoindentation: A preliminary correlation of physical properties with phase type. Materials Characterization, 2004, 53(2-4): 223–231
https://doi.org/10.1016/j.matchar.2004.08.014
9 Wu Y, Kang L, Li H. Determination of elastic-plastic and creep of calcium-silicate-hydrate gel. Chinese Journal of Materials Research, 2010(2):123–128
10 Li W, Xiao J, Huang L, Shah S P. Experimental study on mechanical properties of interracial transition zones in recycled aggregate concrete. Journal of Hunan University—Natural Sciences, 2014, 41(12): 31–39
https://doi.org/10.3724/SP.J.1238.2013.00031
11 Sorelli L, Constantinides G, Ulm F J, Toutlemonde F. The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques. Cement and Concrete Research, 2008, 38(12): 1447–1456
https://doi.org/10.1016/j.cemconres.2008.09.002
12 Němeček J, Králík V, Vondřejc J. Micromechanical analysis of heterogeneous structural materials. Cement and Concrete Composites, 2013, 36(3): 85–92
https://doi.org/10.1016/j.cemconcomp.2012.06.015
13 Silva W R L D, Němeček J, Štemberk P. Application of multiscale elastic homogenization based on nanoindentation for high performance concrete. Advances in Engineering Software, 2013, 62-63(8): 109–118
https://doi.org/10.1016/j.advengsoft.2013.04.007
14 Němeček J, Šmilauer V, Kopecký L. Nanoindentation characteristics of alkali-activated aluminosilicate materials. Cement and Concrete Composites, 2011, 33(2): 163–170
https://doi.org/10.1016/j.cemconcomp.2010.10.005
15 Pharr W. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research Home, 2011, 7(6): 1564–1583
16 Kamiński M, Kleiber M. Perturbation based stochastic finite element method for homogenization of two-phase elastic composites. Computers & Structures, 2000, 78(6): 811–826
https://doi.org/10.1016/S0045-7949(00)00116-4
17 Povirk G L. Incorporation of microstructural information into models of two-phase materials. Acta Metallurgica et Materialia, 1995, 43(8): 3199–3206
https://doi.org/10.1016/0956-7151(94)00487-3
18 Gusev A A. Representative volume element size for elastic composites: A numerical study. Journal of the Mechanics and Physics of Solids, 1997, 45(9): 1449–1459
https://doi.org/10.1016/S0022-5096(97)00016-1
19 Zaitsev Y B, Wittmann F H. Simulation of crack propagation and failure of concrete. Materials and Structures, 1981, 14(5): 357– 365
20 Walraven J C. Aggregate interlock: A theoretical and experimental analysis. Delft: Delft University Press, 1980
21 Voigt W. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik, 1889, 274(12): 573–587 (in German)
https://doi.org/10.1002/andp.18892741206
22 Reuss A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Journal of Applied Mathematics and Mechanics, 1929, 9(1): 49–58 (in German)
https://doi.org/10.1002/zamm.19290090104
23 Savvas D, Stefanou G, Papadrakakis M. Determination of RVE size for random composites with local volume fraction variation. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 340–358
https://doi.org/10.1016/j.cma.2016.03.002
24 Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95
https://doi.org/10.1016/j.compositesb.2013.11.014
25 Hamdia K M, Msekh M A, Silani M, Vu-Bac N, Zhuang X, Nguyen-Thoi T, Rabczuk T. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190
https://doi.org/10.1016/j.compstruct.2015.08.051
26 Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535
https://doi.org/10.1016/j.commatsci.2014.04.066
27 Vu-Bac N, Rafiee R, Zhuang X, Lahmer T, Rabczuk T. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
https://doi.org/10.1016/j.compositesb.2014.09.008
28 Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed