Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2018, Vol. 12 Issue (4): 629-641   https://doi.org/10.1007/s11709-017-0447-1
  本期目录
A new fracture criterion for peridynamic and dual-horizon peridynamics
Jinhai ZHAO1, Hesheng TANG1,2(), Songtao XUE1
1. Research Institute of Structural Engineering and Disaster Reduction, Tongji University, Shanghai 200092, China
2. State Key Laboratory of Disaster Prevention in Civil Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(2924 KB)   HTML
Abstract

A new fracture criterion based on the crack opening displacement for peridynamic (PD) and dual-horizon peridynamics (DH-PD) is proposed. When the relative deformation of the PD bond between the particles reaches the critical crack tip opening displacement of the fracture mechanics, we assume that the bond force vanishes. A new damage rule similar to the local damage rule in conventional PD is introduced to simulate fracture. The new formulation is developed for a linear elastic solid though the extension to nonlinear materials is straightforward. The performance of the new fracture criterion is demonstrated by four examples, i.e. a bilateral crack problem, double parallel crack, monoclinic crack and the double inclined crack. The results are compared to experimental data and the results obtained by other computational methods.

Key wordsCastigliano’s theorem    breaking energy    critical extension    XFEM    COD    PD-COD
收稿日期: 2017-04-23      出版日期: 2018-11-20
Corresponding Author(s): Hesheng TANG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2018, 12(4): 629-641.
Jinhai ZHAO, Hesheng TANG, Songtao XUE. A new fracture criterion for peridynamic and dual-horizon peridynamics. Front. Struct. Civ. Eng., 2018, 12(4): 629-641.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0447-1
https://academic.hep.com.cn/fsce/CN/Y2018/V12/I4/629
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
left crack size right crack size crack longitudinal offset distance(specimen label)
10 10 0(10-00) 10(10-10) 20(10-20)
Tab.1  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
1 Amiri F, Millan D, Arroyo M, Silani M, Rabczuk T. Fourth order phase-field model for local max-ent approximants applied to crack propagation. Computer Methods in Applied Mechanics and Engineering, 2016, 312(C): 254–275
https://doi.org/10.1016/j.cma.2016.02.011
2 Amiri F, Millán D, Shen Y, Rabczuk T, Arroyo M. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109
https://doi.org/10.1016/j.tafmec.2013.12.002
3 Areias P, Rabczuk T, de Sá J C. A novel two-stage discrete crack method based on the screened Poisson equation and local mesh re_nement. Computational Mechanics, 2016, 58(6): 1003–1018
https://doi.org/10.1007/s00466-016-1328-5
4 Thai T Q, Rabczuk T, Bazilevs Y, Meschke G. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604
https://doi.org/10.1016/j.cma.2016.02.031
5 Budarapu P, Gracie R, Bordas S, Rabczuk T. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148
https://doi.org/10.1007/s00466-013-0952-6
6 Budarapu P R, Gracie R, Yang S W, Zhuang X, Rabczuk T. Efficient Coarse Graining in Multiscale Modeling of Fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143
https://doi.org/10.1016/j.tafmec.2013.12.004
7 Silani M, Talebi H, Hamouda A S, Rabczuk T. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23
https://doi.org/10.1016/j.jocs.2015.11.007
8 Talebi H, Silani M, Rabczuk T. Concurrent Multiscale Modelling of Three Dimensional Crack and Dislocation Propagation. Advances in Engineering Software, 2015, 80: 82–92
https://doi.org/10.1016/j.advengsoft.2014.09.016
9 Silani M, Ziaei-Rad S, Talebi H, Rabczuk T. A Semi-Concurrent Multiscale Approach for Modeling Damage in Nanocomposites. Theoretical and Applied Fracture Mechanics, 2014, 74: 30–38
https://doi.org/10.1016/j.tafmec.2014.06.009
10 Talebi H, Silani M, Bordas S, Kerfriden P, Rabczuk T. A Computational Library for Multiscale Modelling of Material Failure. Computational Mechanics, 2014, 53(5): 1047–1071
https://doi.org/10.1007/s00466-013-0948-2
11 Talebi H, Silani M, Bordas S P A, Kerfriden P, Rabczuk T. Molecular Dynamics/XFEM Coupling by a Three-Dimensional Extended Bridging Domain with Applications to Dynamic Brittle Fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541
https://doi.org/10.1615/IntJMultCompEng.2013005838
12 Areias P, Rabczuk T, Msekh M. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312(C): 322–350
https://doi.org/10.1016/j.cma.2016.01.020
13 Areias P, Msekh M A, Rabczuk T. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143
https://doi.org/10.1016/j.engfracmech.2015.10.042
14 Areias P M A, Rabczuk T, Camanho P P. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63
https://doi.org/10.1016/j.tafmec.2014.06.006
15 Areias P, Rabczuk T, Dias-da-Costa D. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137
https://doi.org/10.1016/j.engfracmech.2013.06.006
16 Areias P, Rabczuk T, Camanho P P. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947
https://doi.org/10.1007/s00466-013-0855-6
17 Areias P, Rabczuk T. Finite strain fracture of plates and shells with configurational forces and edge rotation. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
https://doi.org/10.1002/nme.4477
18 Dolbow J E. An extended finite element method with discontinuous enrichment for applied mechanics. Northwestern university, 1999.
19 Fries T P, Belytschko T. The extended/generalized finite element method: an overview of the method and its applications. International Journal for Numerical Methods in Engineering, 2010, 84(3): 253–304
20 Ghorashi S, Valizadeh N, Mohammadi S, Rabczuk T. T-spline based XIGA for Fracture Analysis of Orthotropic Media. Computers & Structures, 2015, 147: 138–146
https://doi.org/10.1016/j.compstruc.2014.09.017
21 Nguyen-Thanh N, Valizadeh N, Nguyen M N, Nguyen-Xuan H, Zhuang X, Areias P, Zi G, Bazilevs Y, De Lorenzis L, Rabczuk T. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291
https://doi.org/10.1016/j.cma.2014.08.025
22 Shi G H. Numerical manifold method and discontinuous deformation analysis. 1997.
23 Cai Y, Zhuang X, Zhu H. A generalized and efficient method for finite cover generation in the numerical manifold method. International Journal of Computational Methods, 2013, 10(05): 1350028
https://doi.org/10.1142/S021987621350028X
24 Belytschko T, Lu Y Y, Gu L. Element‐free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229–256
https://doi.org/10.1002/nme.1620370205
25 Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods. International Journal for Numerical Methods in Fluids, 1995, 20(8‐9): 1081–1106
https://doi.org/10.1002/fld.1650200824
26 Li S, Liu W K. Meshfree and particle methods and their applications. Applied Mechanics Reviews, 2002, 55(1): 1–34
https://doi.org/10.1115/1.1431547
27 Nguyen V P, Rabczuk T, Bordas S, Duflot M. Meshless methods: a review and computer implementation aspects. Mathematics and Computers in Simulation, 2008, 79(3): 763–813
https://doi.org/10.1016/j.matcom.2008.01.003
28 Zhuang X, Augarde C E, Mathisen K M. Fracture modeling using meshless methods and level sets in 3D: framework and modeling. International Journal for Numerical Methods in Engineering, 2012, 92(11): 969–998
https://doi.org/10.1002/nme.4365
29 Amiri F, Anitescu C, Arroyo M, Bordas S, Rabczuk T. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57
https://doi.org/10.1007/s00466-013-0891-2
30 Rabczuk T, Areias P M A. A meshfree thin shell for arbitrary evolving cracks based on an external enrichment. CMES-Computer Modeling in Engineering and Sciences, 2006, 16(2): 115–130
31 Rabczuk T, Bordas S, Zi G. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495
https://doi.org/10.1007/s00466-006-0122-1
32 Rabczuk T, Areias P M A, Belytschko T. A meshfree thin shell method for nonlinear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
https://doi.org/10.1002/nme.2013
33 Rabczuk T, Zi G. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760
https://doi.org/10.1007/s00466-006-0067-4
34 Rabczuk T, Bordas S, Zi G. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23-24): 1391–1411
https://doi.org/10.1016/j.compstruc.2008.08.010
35 Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A geometrically non-linear three dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
36 Rabczuk T, Gracie R, Song J H, Belytschko T. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71
37 Bordas S, Rabczuk T, Zi G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by extrinsic discontinuous enrichment of meshfree methods without asymptotic enrichment. Engineering Fracture Mechanics, 2008, 75(5): 943–960
https://doi.org/10.1016/j.engfracmech.2007.05.010
38 Rabczuk T, Song J H, Belytschko T. Simulations of instability in dynamic fracture by the cracking particles method. Engineering Fracture Mechanics, 2009, 76(6): 730–741
https://doi.org/10.1016/j.engfracmech.2008.06.002
39 Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37-40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
40 Rabczuk T, Belytschko T. Cracking particles: a simpli_ed meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
41 Rabczuk T, Belytschko T. A three dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29-30): 2777–2799
https://doi.org/10.1016/j.cma.2006.06.020
42 Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 1963, 85(4): 519–527
https://doi.org/10.1115/1.3656897
43 Sih G C. Strain-energy-density factor applied to mixed mode crack problems. International Journal of Fracture, 1974, 10(3): 305–321
https://doi.org/10.1007/BF00035493
44 Hussain M A, Pu S L, Underwood J. Strain energy release rate for a crack under combined mode I and mode II. In: Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II. ASTM International, 1974.
45 Ayatollahi M R, Abbasi H. Prediction of fracture using a strain based mechanism of crack growth. Building Research Journal, 2001, 49: 167–180
46 Awaji H, Sato S. Combined Mode Fracture Toigliess measurement by the Disk Test. Journal of Engineering Materials and Technology, 1978, 100(2): 175
https://doi.org/10.1115/1.3443468
47 Shetty D K, Rosenfield A R, Duckworth W H. Mixed-mode fracture in biaxial stress state: application of the diametral-compression (Brazilian disk) test. Engineering Fracture Mechanics, 1987, 26(6): 825–840
https://doi.org/10.1016/0013-7944(87)90032-4
48 Chang S H, Lee C I, Jeon S. Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Engineering Geology, 2002, 66(1-2): 79–97
https://doi.org/10.1016/S0013-7952(02)00033-9
49 Aliha M R M, Ashtari R, Ayatollahi M R. Mode I and mode II fracture toughness testing for a coarse grain marble. Applied Mechanics and Materials, 2006, 5: 181–188.
50 Richard H A, Benitz K.A loading device for the creation of mixed mode in fracture mechanics. international Journal of Fracture, 1983, 22(2): R55–R58.
51 Arcan M, Hashin Z, Voloshin A. A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Experimental Mechanics, 1978, 18(4): 141–146
https://doi.org/10.1007/BF02324146
52 Zipf R K Jr, Bieniawski Z T. Mixed mode testing for fracture toughness of coal based on critical-energy-density. In: The 27th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association, 1986.
53 Silling S A. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209
https://doi.org/10.1016/S0022-5096(99)00029-0
54 Silling S A, Zimmermann M, Abeyaratne R. Deformation of a peridynamic bar. Journal of Elasticity, 2003, 73(1-3): 173–190
https://doi.org/10.1023/B:ELAS.0000029931.03844.4f
55 Ren H, Zhuang X, Cai Y, Rabczuk T. Dual-Horizon Peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108(12): 1451–1476
https://doi.org/10.1002/nme.5257
56 Ren H, Zhuang X, Rabczuk T. Dual-horizon peridynamics: A stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782
https://doi.org/10.1016/j.cma.2016.12.031
57 Silling S A. Dynamic fracture modeling with a meshfree peridynamic code. Computational Fluid & Solid Mechamcs,. 2003, 641–644
58 Weckner O, Brunk G, Epton M A, Silling S A. Green’s functions in non-local three-dimensional linear elasticity In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 2009
59 Yu K, Xin X J, Lease K B. A new adaptive integration method for the peridynamic theory. Modelling and Simulation in Materials Science and Engineering, 2011, 19(4): 045003
https://doi.org/10.1088/0965-0393/19/4/045003
60 Kilic B. Peridynamic theory for progressive failure prediction in homogeneous and heterogeneous materials. ProQuest, 2008.
61 Silling S A. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209
https://doi.org/10.1016/S0022-5096(99)00029-0
62 Silling S A, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 2005, 83(17-18): 1526–1535
https://doi.org/10.1016/j.compstruc.2004.11.026
63 Silling S A, Bobaru F. Peridynamic modeling of membranes and fibers. International Journal of Non-linear Mechanics, 2005, 40(2-3): 395–409
https://doi.org/10.1016/j.ijnonlinmec.2004.08.004
64 Silling S A, Askari E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 2005, 83(17-18): 1526–1535
https://doi.org/10.1016/j.compstruc.2004.11.026
65 Foster J T, Silling S A, Chen W. An energy based failure criterion for use with peridynamic states. International Journal for Multiscale Computational Engineering, 2011, 9(6): 675–688
https://doi.org/10.1615/IntJMultCompEng.2011002407
66 Silling S A, Bobaru F. Peridynamic modeling of membranes and fibers. International Journal of Non-linear Mechanics, 2005, 40(2-3): 395–409
https://doi.org/10.1016/j.ijnonlinmec.2004.08.004
67 Ayatollahi M R, Aliha M R M. Analysis of a new specimen for mixed mode fracture tests on brittle materials. Engineering Fracture Mechanics, 2009, 76(11): 1563–1573
https://doi.org/10.1016/j.engfracmech.2009.02.016
68 Shen F, Zhang Q, Huang D. Damage and failure process of concrete structure under uni-axial tension based on peridynamics modeling. Chinese Journal of Computational Mechanics, 2013, 30: 79–83
69 Zhou X P, Shou Y D. Numerical Simulation of Failure of Rock-Like Material Subjected to Compressive Loads Using Improved Peridynamic Method. International Journal of Geomechanics, 2016: 04016086
70 Ren H, Zhuang X, Rabczuk T. A new peridynamic formulation with shear deformation for elastic solid. Journal of Micromechanics and Molecular Physics, 2016, 1(02): 1650009
https://doi.org/10.1142/S2424913016500090
71 Oterkus E. Peridynamic theory for modeling three-dimensional damage growth in metallic and composite structures. University of Arizona, 2010.
72 Bilby B A, Cottrell A H, Swinden K H. The spread of plastic yield from a notch. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1963, 272(1350): 304–314
73 Bilby B A, Cottrell A H, Smith E, Swinden K H. Plastic yielding from sharp notches. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1964, 279(1376): 1–9
74 Dugdale D S. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100–104
https://doi.org/10.1016/0022-5096(60)90013-2
75 Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics, 1962, 7: 55–129
https://doi.org/10.1016/S0065-2156(08)70121-2
76 Zeng S. Bilateral crack growth behavior of Q345 steel under uniaxial tensile load. Guangxi University, 2014
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed