Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2018, Vol. 12 Issue (4): 577-593   https://doi.org/10.1007/s11709-017-0458-y
  本期目录
Nonlinear analysis and reliability of metallic truss structures
Karim BENYAHI1(), Youcef BOUAFIA1, Salma BARBOURA2, Mohand Said KACHI1
1. LaMoMs Laboratory, University Mouloud Mammeri of Tizi-Ouzou, 15000 Tizi-Ouzou, Algeria
2. C.N.R.S. LSPM – UPR 3407 Laboratory, Paris 13 University, Paris, France
 全文: PDF(1163 KB)   HTML
Abstract

The present study goes into the search for the safety domain of civil engineering structures. The objective is to show how a reliability-evaluation brought by a mechanical sizing can be obtained. For that purpose, it is necessary to have a mechanical model and a reliability model representing correctly the behavior of this type of structure. ?It is a question on one hand, to propose a formulation for the nonlinear calculation (mechanical nonlinearity) of the spatial structures in trusses, and on the other hand, to propose or to adapt a formulation and a modeling of the reliability. The principle of Hasofer-Lind can be applied, in first approach, for the reliability index estimation, scenarios and the probability of failure. ?The made check concerned metallic in truss structures. Finally, some structures are calculated using the method adapted by Hasofer-Lind to validate the probability approach of the reliability analysis.

Key wordsmodeling    nonlinearity mechanical    truss    probability    reliability    response surface    probability of failure
收稿日期: 2017-03-20      出版日期: 2018-11-20
Corresponding Author(s): Karim BENYAHI   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2018, 12(4): 577-593.
Karim BENYAHI, Youcef BOUAFIA, Salma BARBOURA, Mohand Said KACHI. Nonlinear analysis and reliability of metallic truss structures. Front. Struct. Civ. Eng., 2018, 12(4): 577-593.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-017-0458-y
https://academic.hep.com.cn/fsce/CN/Y2018/V12/I4/577
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
vector X random variables distribution law mean μX standard deviation σX
X1
X2
P
δ
exponential
lognormal
45.0
0.00463588
32.4037035
0.00419236
Tab.1  
Fig.13  
Fig.14  
Fig.15  
reliability index probability of failure direction cosine
( α 1,α2)
design point
(U1, U2)
design point
(X1, X2)
1.29306 0.09853 (-0.3047, 0.9524) (0.3940, -1.2315) (28.8314, 0.0018)
Tab.2  
variables distribution law
case 1 case 2 case 3 case 4 case 5 case 6 case 7
P
δ
normal
normal
lognormal
lognormal
exponential
exponential
exponential
lognormal
exponential
normal
lognormal
normal
lognormal
exponential
Tab.3  
Fig.16  
case reliability index probability of failure direction cosine
( α 1,α2)
design point
(U1, U2)
design point
(X1, X2)
case 1 0.20974 0.4169 (-0.1094, 0.9939) (0.0229, -0.2084) (51.755, 0.0045)
case 2 0.11476 0.4542 (-0.1157, 0.9932) (0.0132, -0.1139) (36.724, 0.0032)
case 3 0.09772 0.4611 (0.2409, -0.9705) (-0.0235, 0.0948) (11.84, 0.00086)
case 4 1.29306 0.09800 (-0.3047, 0.9524) (0.3940, -1.2315) (28.831, 0.0018)
case 5 0.70959 0.2390 (-0.2901, 0.9569) (0.2058, -0.6790) (69.763, 0.0074)
case 6 0.82593 0.2044 (-0.3148, 0.9491) (0.2600, -0.7839) (71.391, 0.0079)
case 7 0.4054 0.3426 (04997, -0.8661) (-0.2026, 0.3511) (33.498, 0.0022)
Tab.4  
Fig.17  
vector X random variables distribution law mean μX standard deviation σX
X1
X2
λ
U/L
exponential
lognormal
0.589735
0.0016639
0.34098745
0.00179006
Tab.5  
Fig.18  
Fig.19  
Fig.20  
reliability index probability of failure direction cosine
( α 1,α2)
design point
(U1, U2)
design point
(X1, X2)
1.0300 0.1515 (-0.2794, 0.9601) (0.2878, -0.9889) (0.3622, 0.000639)
Tab.6  
variables distribution law
case 1 case 2 case 3 case 4 case 5 case 6 case 7
λ
U/L
normal
normal
lognormal
lognormal
exponential
exponential
exponential
lognormal
exponential
normal
lognormal
normal
lognormal
exponential
Tab.7  
Fig.21  
case reliability index probability of failure direction cosine
( α 1,α2)
design point
(U1, U2)
design point
(X1, X2)
case 1 0.3385 0.3674 (-0.4174, 0.9086) (0.1413, -0.3076) (0.6942, 0.0014)
case 2 0.2506 0.4010 (-0.5398, 0.8417) (0.1353, -0.2109) (0.6406, 0.0012)
case 3 0.2360 0.4067 (0.2460, -0.9692) (-0.0580, 0.2287) (0.226, 0.00033)
case 4 1.0300 0.1515 (-0.2794, 0.9601) (0.2878, -0.9889) (0.362, 0.00063)
case 5 0.7535 0.2255 (-0.2558, 0.9667) (0.1928, -0.7283) (0.6811, 0.0013)
case 6 0.4710 0.3188 (-0.2491, 0.9684) (0.1173, -0.4561) (0.7426, 0.0014)
case 7 0.4364 0.3312 (0.4279, -0.9037) (-0.1867, 0.3944) (0.476, 0.00077)
Tab.8  
Ea: Young modulus of steel,
εe?: Steel yielding strain,
σe: Steel yielding stress,
εu: Steel ultimate strain,
εx?: Strain in the gravity center of the total area caused by the normal force N,
{Fmn}: Contribution caused by the concrete and / or metal profile,
Sm: The metal profile’s cross-section.
Em (y,z)?: The longitudinal elastic modulus at a current point of the metal profile cross-section.
Δσm(y ,z): Normal stress in a current point of the metal profile,
[kmn]: Section stiffness matrix,
{Fsn}: Vector of the sections normal forces,
e?: Element length increase,
L0?: Element initial length,
L: Element length after deformation,
[B]: Geometric transformation matrix,
[KL]: Element stiffness matrix in the local coordinate,
[R0]: Geometric transformation matrix,
[KX]: Element stiffness matrix in the absolute coordinates,
[KN]: Bar element’s stiffness matrix in the intrinsic system coordinate.
[KU]: Element Stiffness matrix in the intermediate local coordinate system,
{FX}: The nodes load vector in the absolute system coordinate,
{SX}: The nodes displacements vector in the absolute coordinate system,
[FL]?: The nodes load in the local coordinate system.
[SL]?: The nodes displacements vector in the local system coordinate.
[FU]?: The nodes loads vector in the intermediate system coordinate.
[SU]?: The nodes displacements vector in the intermediate system coordinate.
ui, vi, wi?: Components of the displacement vector in the local coordinate system,
[ SS]i1: Sections flexibility matrix of the iteration (i-1),
εs: Strains balanced in the previous step,
{ΔFs} r: Forces increase in the step r,
{Δε} 0: Initial strains increase,
[K]i: Structure stiffness matrix at the iteration (i),
{Us}: Node displacement vector at the latest stable step,
{ΔP}r: Applied load increase in the r step,
{P}: External structures applied loads,
{Pint}: Internal structures applied loads,
ϕ?: The normal law distribution function reduced centered (mean 0 and standard deviation 1),
mR?: Means strength,
mS ?: Means loads,
σR : Standard deviations of the strength,
σS?: Standard deviations of the loads,
P*?: Point of the most probable failure,
α (k): Vector cosine directors.
  
1 Yaghmai S. Incremental analysis of large deformations in mechanics of solids with applications to axisymmetric sheus of revolution. Technical Reprot SESM 68–17, Univ. Califorma, Berkeley, 1968
2 Grelat A. Nonlinear analysis of reinforced concrete hyperstatics frames, Doctoral thesis Engineer. University Paris VI, 1978
3 Grelat A. Non-linear behavior and stability of reinforced concrete frames, Annals of I.T.B.T.P., N° 234, 1978, France
4 Sargin M. Stress-Strain relationship for concrete and the analysis of structural concrete sections. Solid Mechanics division, University of waterloo, Canada, 1971
5 Rabah O N. Numerical simulation of nonlinear behavior of frames Space, Doctoral Thesis. Central School of Paris, France, 1990
6 Robert F. Contribution to the geometric and material nonlinear analysis of space frames in civil engineering, application to structures, Doctoral Thesis. National Applied Sciences Institute, Lyon, France, 1999
7 Espion B. Contribution to the nonlinear analysis of plane frames. Application to reinforced concrete structures, Doctoral Thesis in Applied Science, vol. 1 and 2. Free University of Brussels, Belgium, 1986
8 Machacek J, Charvat M. Design of Shear Connection between Steel Truss and Concrete Slab. Structures and Techniques, 2013, 57: 722–729
9 Feng R, Chen Y, Gao S, Zhang W. Numerical investigation of concrete-filled multi-planar CHS Inverse-Triangular tubular truss. Thin-walled Structures, 2015, 94: 23–37
https://doi.org/10.1016/j.tws.2015.03.030
10 Adjrad A, Kachi M S, Bouafia Y, Iguetoulène F. Nonlinear modeling structures on 3D, in Proc. 4th Annu.icsaam 2011. Structural Analysis of Advanced Materials, Romania, pp. 1-9, 2011
11 Kachi M S. Modeling the behavior until rupture beams with external prestressing, Doctoral Thesis. University of Tizi-Ouzou, Algeria, 2006
12 Ravindra M K, Lind N C, Siu W. Illustration of reliability-based design. Journal of the Structural Division, 1974, 100(9): 1789–1811
13 Karamchandani A, Cornell C. Sensitivity estimation within first and second order reliability methods. Structural Safety, 1992, 11(2): 95–107
https://doi.org/10.1016/0167-4730(92)90002-5
14 Vu-Bac N, Lahmer T, Keitel H, Zhao J, Zhuang X, Rabczuk T. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84
https://doi.org/10.1016/j.mechmat.2013.07.021
15 Vu-Bac N, Lahmer T, Zhang Y, Zhuang X, Rabczuk T. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95
https://doi.org/10.1016/j.compositesb.2013.11.014
16 Vu-Bac N, Silani M, Lahmer T, Zhuang X, Rabczuk T. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535
https://doi.org/10.1016/j.commatsci.2014.04.066
17 Vu-Bac N, Lahmer T, Zhuang X, Nguyen-Thoi T, Rabczuk T. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
18 Vu-Bac N, Rafiee R, Zhuang X, Lahmer T Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
https://doi.org/10.1016/j.compositesb.2014.09.008
19 Crisfield M A. Non-linear Finite Element Analysis of Solids and Structures – Vol 1. John Wiley & Sons Ltd., Chichester, England, 1991
20 Crisfield M A. Non-linear Finite Element Analysis of Solids and Structures – Vol 2. John Wiley & Sons Ltd., Chichester, England, 1997
21 Carlos A. Felippa. Nonlinear finite element methods. University of Colorado Boulder, Colorado 80309-0429, USA., 2001
22 Liu G R, Quek S S. The Finite Element Method: A Practical Course, Butterworth-Heinemann. Elsevier Science Ltd., 2003
23 Fish J, Belytschko T. A First Course in Finite Elements. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ. England, 2007
24 Greco M, Venturini W S. Stability analysis of three-dimensional trusses. Latin American Journal of Solids and Structures, 2006, 3: 325–344
25 Lemaire M.Probabilistic approach to dimensioning: Modeling uncertainty and approximation methods, Technical editions engineering, 2012
26 Deheeger F. Reliability-mechanical coupling: SMART- Statistical learning methodology in reliability, Doctoral Thesis. University BLAISE PASCAL- Clermont II, 2008
27 Pendola M, Mohamed A, Hornet P, Lemaire M. Structural reliability in context of uncertainty Statistics, XV mechanics French Congress, Nancy, 3-7, 2001
28 Köylüoǧlu H U, Nielsen S R K. New approximations for SORM integrals. Structural Safety, 1994, 13(4): 235–246
https://doi.org/10.1016/0167-4730(94)90031-0
29 Low B K. FORM, SORM, and spatial modeling in geotechnical engineering. Structural Safety, 2014, 49: 56–64
https://doi.org/10.1016/j.strusafe.2013.08.008
30 Lemaire M. Structural reliability: static reliability-mechanical coupling. Editions Hermes Lavoisier, Paris, 2005
31 Sun X, Chan S L. Design and second-order analysis of trusses composed of angle sections. International Journal of Structural Stability and Dynamics, 2002, 02(03): 315–334
https://doi.org/10.1142/S0219455402000610
32 Kim S E, Park M H, Choi S H. Practical advanced analysis and design of three-dimensional truss bridges. Journal of Constructional Steel Research, 2001, 57(8): 907–923
https://doi.org/10.1016/S0143-974X(01)00015-3
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed