Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2019, Vol. 13 Issue (2): 353-363   https://doi.org/10.1007/s11709-018-0469-3
  本期目录
The effects of interfacial strength on fractured microcapsule
Luthfi Muhammad MAULUDIN1,2(), Chahmi OUCIF1,3
1. Institute of Structural Mechanics, Bauhaus University of Weimar, Weimar 99423, Germany
2. Department of Civil Engineering, Politeknik Negeri Bandung (POLBAN), Bandung, 40012, Indonesia
3. Département de Génie Civil, Université des Sciences et de la Technologie, 31000 Oran, Algerie
 全文: PDF(4871 KB)   HTML
Abstract

The effects of interfacial strength on fractured microcapsule are investigated numerically. The interaction between crack and microcapsule embedded in mortar matrix is modeled based on cohesive approach. The microcapsules are modelled with variation of core-shell thickness ratio and potential cracks are represented by pre-inserted cohesive elements along the element boundaries of the mortar matrix, microcapsules core, microcapsule shell, and at the interfaces between these phases. Special attention is given to the effects of cohesive fracture on the microcapsule interface, namely fracture strength, on the load carrying capacity and fracture probability of the microcapsule. The effect of fracture properties on microcapsule is found to be significant factor on the load carrying capacity and crack propagation characteristics. Regardless of core-shell thickness ratio of microcapsule, the load carrying capacity of self-healing material under tension increases as interfacial strength of microcapsule shell increases. In addition, given the fixed fracture strength of the interface of microcapsule shell, the higher the ratio core-shell thickness, the higher the probability of microcapsules being fractured.

Key wordsinterfacial strength    cohesive elements    microcapsule    core-shell thickness ratio    fracture properties
收稿日期: 2017-07-28      出版日期: 2019-03-12
Corresponding Author(s): Luthfi Muhammad MAULUDIN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 353-363.
Luthfi Muhammad MAULUDIN, Chahmi OUCIF. The effects of interfacial strength on fractured microcapsule. Front. Struct. Civ. Eng., 2019, 13(2): 353-363.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-018-0469-3
https://academic.hep.com.cn/fsce/CN/Y2019/V13/I2/353
Fig.1  
Fig.2  
Fig.3  
model Young’s modulus E (MPa) Poisson’s ratio density (10?9 tonne/mm3) elastic stiffness kn (MPa/mm) cohesive strength tn (MPa) fracture Energy Gf (N/mm)
Mortar 25,000 0.2 2.2 - - -
Capsule core 1000 0.45 1.0 - - -
Capsule shell 3600 0.3 1.0 - - -
COH-MM - - 2.2 106 6 0.06
COH-CC - - 1.0 106 6 0.06
COH-CS - - 1.0 106 6 0.06
COH-SS - - 1.0 106 10 0.1
COH-SM - - 1.0 106 10 0.1
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 TRabczuk. Computational methods for fracture in brittle and quasi-brittle solids: state-of-the-art review and future perspectives. ISRN Applied Mathematics, 2013, 2013(2013): 849231
2 TRabczuk, T Belytschko. Cracking particles: a simplied meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
3 TRabczuk, T Belytschko. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29‒30): 2777–2799
https://doi.org/10.1016/j.cma.2006.06.020
4 TRabczuk, G Zi. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760
https://doi.org/10.1007/s00466-006-0067-4
5 PAreias, T Rabczuk. Quasi-static crack propagation in plane and plate structures using set-valued traction-separation laws. International Journal for Numerical Methods in Engineering, 2008, 74(3): 475–505
https://doi.org/10.1002/nme.2182
6 LChen, T Rabczuk, S P ABordas, GLiu, K Zeng, PKerfriden. Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Computer Methods in Applied Mechanics and Engineering, 2012, 209 ‒ 212: 250–265
https://doi.org/10.1016/j.cma.2011.08.013
7 HNguyen-Vinh, I Bakar, MMsekh, J HSong, JMuthu, GZi, P Le, SBordas, RSimpson, SNatarajan, TLahmer, TRabczuk. Extended finite element method for dynamic fracture of piezo-electric materials. Engineering Fracture Mechanics, 2012, 92: 19–31
https://doi.org/10.1016/j.engfracmech.2012.04.025
8 CZhang, C Wang, TLahmer, PHe, T Rabczuk. A dynamic xfem formulation for crack identification. International Journal of Mechanics and Materials in Design, 2016, 12(4): 427–448
https://doi.org/10.1007/s10999-015-9312-3
9 NVu-Bac, H Nguyen-Xuan, LChen, SBordas, PKerfriden, RSimpson, GLiu, T Rabczuk. A node-based smoothed extended finite element method (NS-XFEM) for fracture analysis. Computer Modeling in Engineering & Sciences, 2011, 73(4): 331–356
10 FAmiri, D Millán, YShen, TRabczuk, MArroyo. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109
https://doi.org/10.1016/j.tafmec.2013.12.002
11 FAmiri, C Anitescu, MArroyo, S P ABordas, TRabczuk. Xlme interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57
https://doi.org/10.1007/s00466-013-0891-2
12 Y LGui, H H Bui, J Kodikara, Q BZhang, JZhao, T Rabczuk. Modelling the dynamic failure of brittle rocks using a hybrid continuum-discrete element method with a mixed-mode cohesive fracture model. International Journal of Impact Engineering, 2016, 87: 146–155
https://doi.org/10.1016/j.ijimpeng.2015.04.010
13 V PNguyen, H Lian, TRabczuk, SBordas. Modelling hydraulic fractures in porous media using flow cohesive interface elements. Engineering Geology, 2017, 225: 68–82
14 PAreias, T Rabczuk, DDias-da Costa. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137
https://doi.org/10.1016/j.engfracmech.2013.06.006
15 PAreias, T Rabczuk. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
https://doi.org/10.1002/nme.4477
16 PAreias, T Rabczuk, PCamanho. Finite strain fracture of 2d problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63
https://doi.org/10.1016/j.tafmec.2014.06.006
17 PAreias, T Rabczuk, MMsekh. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350
https://doi.org/10.1016/j.cma.2016.01.020
18 PAreias, M Msekh, TRabczuk. Damage and fracture algorithm using the screened poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143
https://doi.org/10.1016/j.engfracmech.2015.10.042
19 PAreias, T Rabczuk. Steiner-point free edge cutting of tetrahedral meshes with applications in fracture. Finite Elements in Analysis and Design, 2017, 132: 27–41
https://doi.org/10.1016/j.finel.2017.05.001
20 HRen, X Zhuang, YCai, TRabczuk. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108(12): 1451–1476
https://doi.org/10.1002/nme.5257
21 HRen, X Zhuang, TRabczuk. Dual-horizon peridynamics: a stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782
https://doi.org/10.1016/j.cma.2016.12.031
22 K MHamdia, T Lahmer, TNguyen-Thoi, TRabczuk. Predicting the fracture toughness of pncs: a stochastic approach based on ANN and ANFIS. Computational Materials Science, 2015, 102: 304–313
https://doi.org/10.1016/j.commatsci.2015.02.045
23 K MHamdia, X Zhuang, PHe, TRabczuk. Fracture toughness of polymeric particle nanocomposites: evaluation of models performance using bayesian method. Composites Science and Technology, 2016, 126: 122–129
https://doi.org/10.1016/j.compscitech.2016.02.012
24 HTalebi, M Silani, S PBordas, PKerfriden, TRabczuk. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071
https://doi.org/10.1007/s00466-013-0948-2
25 HTalebi, M Silani, TRabczuk. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92
https://doi.org/10.1016/j.advengsoft.2014.09.016
26 P RBudarapu, R Gracie, S PBordas, TRabczuk. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148
https://doi.org/10.1007/s00466-013-0952-6
27 S WYang, P R Budarapu, D R Mahapatra, S P Bordas, G Zi, TRabczuk. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96: 382–395
https://doi.org/10.1016/j.commatsci.2014.08.054
28 P RBudarapu, R Gracie, S WYang, XZhuang, TRabczuk. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143
https://doi.org/10.1016/j.tafmec.2013.12.004
29 BArash, H S Park, T Rabczuk. Tensile fracture behavior of short carbon nanotube reinforced polymer composites: a coarse-grained model. Composite Structures, 2015, 134: 981–988
https://doi.org/10.1016/j.compstruct.2015.09.001
30 BArash, H S Park, T Rabczuk. Coarse-grained model of the J-integral of carbon nanotube reinforced polymer composites. Carbon, 2016, 96: 1084–1092
https://doi.org/10.1016/j.carbon.2015.10.058
31 ZYang, J Hollar, XHe, XShi. A self-healing cementitious composite using oil core/silica gel shell microcapsules. Cement and Concrete Composites, 2011, 33(4): 506–512
https://doi.org/10.1016/j.cemconcomp.2011.01.010
32 HHuang, G Ye. Simulation of self-healing by further hydration in cementitious materials. Cement and Concrete Composites, 2012, 34(4): 460–467
https://doi.org/10.1016/j.cemconcomp.2012.01.003
33 KVan Tittelboom, KAdesanya, PDubruel, PVan Puyvelde, NDe Belie. Methyl methacrylate as a healing agent for self-healing cementitious materials. Smart Materials and Structures, 2011, 20(12): 125016
https://doi.org/10.1088/0964-1726/20/12/125016
34 KVan Tittelboom, NDe Belie. Self-healing in cementitious materials- A review. Materials (Basel), 2013, 6(6): 2182–2217
https://doi.org/10.3390/ma6062182
35 SWhite, S Maiti, AJones, EBrown, NSottos, PGeubelle. Fatigue of self-healing polymers: multiscale analysis and experiments. In: ICF11, Italy, 2005
36 FGilabert, D Garoz, WVan Paepegem. Stress concentrations and bonding strength in encapsulation-based self-healing materials. Materials & Design, 2015, 67: 28–41
https://doi.org/10.1016/j.matdes.2014.11.012
37 EKaltzakorta, I Erkizia. Silica microcapsules encapsulating epoxy compounds for self-healing cementitiousmaterials. In: Proceedings of 3rd International Conference on Self-Healing Materials, Bath, UK, 2011
38 AAlexeev, R Verberg, A CBalazs. Patterned surfaces segregate compliant microcapsules. Langmuir, 2007, 23(3): 983–987
https://doi.org/10.1021/la062914q
39 BHilloulin, K Van Tittelboom, EGruyaert, NDe Belie, ALoukili. Design of polymeric capsules for self-healing concrete. Cement and Concrete Composites, 2015, 55: 298–307
https://doi.org/10.1016/j.cemconcomp.2014.09.022
40 A VSimulia. Abaqus 6.13 documentation. Dassault systemes, 2013
41 TRabczuk, G Zi, SBordas, HNguyen-Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
42 TRabczuk, R Gracie, J HSong, TBelytschko. Immersed particle method for fluid-structure interaction. International Journal for Numerical Methods in Engineering, 2010, 81(1): 48–71
43 TRabczuk, J H Song, T Belytschko. Simulations of instability in dynamic fracture by the cracking particles method. Engineering Fracture Mechanics, 2009, 76(6): 730–741
https://doi.org/10.1016/j.engfracmech.2008.06.002
44 TRabczuk, G Zi, SBordas, HNguyen-Xuan. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
45 TRabczuk, G Zi, AGerstenberger, WWall. A new crack tip element for the phantom-node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599
https://doi.org/10.1002/nme.2273
46 TRabczuk, E Samaniego. Discontinuous modelling of shear bands using adaptive meshfree methods. Computer Methods in Applied Mechanics and Engineering, 2008, 197(6‒8): 641–658
https://doi.org/10.1016/j.cma.2007.08.027
47 TRabczuk, P Areias, TBelytschko. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
https://doi.org/10.1002/nme.2013
48 TRabczuk, S Bordas, GZi. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495
https://doi.org/10.1007/s00466-006-0122-1
49 TRabczuk, S Bordas, GZi. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23‒24): 1391–1411
https://doi.org/10.1016/j.compstruc.2008.08.010
50 TBelytschko, Y Y Lu, L Gu. Element-free galerkin methods, International Journal for Numerical Methods in Engineering, 1994, 37(2): 229–256 doi:10.1002/nme.1620370205
51 VNguyen, T Rabczuk, SBordas, MDuflot. Meshless methods: a review and computer implementation aspects. Mathematics and Computers in Simulation, 2008, 79(3): 763–813
https://doi.org/10.1016/j.matcom.2008.01.003
52 T JHughes, J A Cottrell, Y Bazilevs. Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39‒41): 4135–4195
https://doi.org/10.1016/j.cma.2004.10.008
53 VNguyen, C Anitescu, SBordas, TRabczuk. Isogeometric analysis: an overview and computer implementation aspects. Mathematics and Computers in Simulation, 2015, 117: 89–116
https://doi.org/10.1016/j.matcom.2015.05.008
54 SGhorashi, N Valizadeh, SMohammadi, TRabczuk. T-spline based xiga for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146
https://doi.org/10.1016/j.compstruc.2014.09.017
55 NNguyen-Thanh, N Valizadeh, MNguyen, HNguyen-Xuan, XZhuang, PAreias, GZi, Y Bazilevs, LDe Lorenzis, TRabczuk. An extended isogeometric thin shell analysis based on kirchhoff-love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291
https://doi.org/10.1016/j.cma.2014.08.025
56 NNguyen-Thanh, H Nguyen-Xuan, SBordas, TRabczuk. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two dimensional elastic solids. Computer Methods in Applied Mechanics and Engineering, 2011, 200(21‒22): 1892–1908
https://doi.org/10.1016/j.cma.2011.01.018
57 NNguyen-Thanh, J Kiendl, HNguyen-Xuan, RWüchner, KBletzinger, YBazilevs, TRabczuk. Rotation free isogeometric thin shell analysis using pht-splines. Computer Methods in Applied Mechanics and Engineering, 2011, 200(47‒48): 3410–3424
https://doi.org/10.1016/j.cma.2011.08.014
58 HGhasemi, H Park, TRabczuk. A level-set based iga formulation for topology optimization of exoelectric materials. Computer Methods in Applied Mechanics and Engineering, 2017, 313: 239–258
https://doi.org/10.1016/j.cma.2016.09.029
59 M SQuayum, X Zhuang, TRabczuk. Computational model generation and RVE design of self-healing concrete. Frontiers of Structural and Civil Engineering, 2015, 9(4): 383–396
https://doi.org/10.1007/s11709-015-0320-z
60 XWang, A P Jivkov. Combined numerical-statistical analyses of damage and failure of 2D and 3D mesoscale heterogeneous concrete. Mathematical Problems in Engineering, 2015, 501: 702563
61 K MHamdia, M A Msekh, M Silani, NVu-Bac, XZhuang, TNguyen-Thoi, TRabczuk. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190
https://doi.org/10.1016/j.compstruct.2015.08.051
62 NVu-Bac, T Lahmer, XZhuang, TNguyen-Thoi, TRabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed