Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2019, Vol. 13 Issue (2): 364-379   https://doi.org/10.1007/s11709-018-0470-x
  本期目录
Maximum entropy based finite element analysis of porous media
Emad NOROUZI, Hesam MOSLEMZADEH, Soheil MOHAMMADI()
High Performance Computing Laboratory, School of Civil Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
 全文: PDF(2957 KB)   HTML
Abstract

The maximum entropy theory has been used in a wide variety of physical, mathematical and engineering applications in the past few years. However, its application in numerical methods, especially in developing new shape functions, has attracted much interest in recent years. These shape functions possess the potential for performing better than the conventional basis functions in problems with randomly generated coarse meshes. In this paper, the maximum entropy theory is adopted to spatially discretize the deformation variable of the governing coupled equations of porous media. This is in line with the well-known fact that higher-order shape functions can provide more stable solutions in porous problems. Some of the benchmark problems in deformable porous media are solved with the developed approach and the results are compared with available references.

Key wordsmaximum entropy FEM    fully coupled multi-phase system    porous media
收稿日期: 2017-07-30      出版日期: 2019-03-12
Corresponding Author(s): Soheil MOHAMMADI   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 364-379.
Emad NOROUZI, Hesam MOSLEMZADEH, Soheil MOHAMMADI. Maximum entropy based finite element analysis of porous media. Front. Struct. Civ. Eng., 2019, 13(2): 364-379.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-018-0470-x
https://academic.hep.com.cn/fsce/CN/Y2019/V13/I2/364
Fig.1  
Fig.2  
base position x direction y direction water pressure
rigid base top free rigid constant P w=0.0 Pa
bottom rigid free impermeable
left rigid free impermeable
right rigid free impermeable
smooth base top free rigid constant P w=0.0 Pa
bottom rigid free impermeable
left free free impermeable
right free free impermeable
Tab.1  
item symbol value
porosity n 0.3
biot coefficient Α 1
elastic module of solid (N/m2) E 1e4
Poissoin’s ratio Ν 0.0
solid density (kg/m3) ρ s 2700
water density (kg/m3) ρ w 1000
intrinsic permeability k 1e?6
dynamic viscosity of water (Pa·s) μ w 1.1e?3
Tab.2  
Fig.3  
Fig.4  
Fig.5  
position x direction y direction water pressure Heat condition
top free rigid constant Pw=0.0 Pa constant T =50 K
bottom rigid free impermeable impermeable
left rigid free impermeable impermeable
right rigid free impermeable impermeable
Tab.3  
item symbol value
porosity n 0.3
biot coefficient Α 1
elastic module of solid (N/m2) E 6e6
Poissoin’s ratio ν 0.4
solid density (kg/m3) ρs 2000
water density (kg/m3) ρw 1000
intrinsic permeability k 4e?9
dynamic viscosity of water (Pa·s) μw 1e?3
Effective special heat capacity (kcal/m·K·s) (ρc) eff 40
Effective thermal conductivity (kcal/m·K·s) λeff 0.2
Tab.4  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
item symbol value
porosity n 0.2975
biot coefficient α 1
elastic module of solid (N/m2) E 1.3e6
Poissoin’s Ratio ν 0.4
density of soil (kg/m3) ρs 2000
density of water (kg/m3) ρ w 1000
density of gas (kg/m3) ρ g 1.22
bulk module of solid (N/m2) Ks 1e12
bulk module of water (N/m2) Kw 2e9
bulk module of gas (N/m2) Kg 0.1e6
intrinsic permeability (m2) k 4.5e?13
dynamic viscosity of water (Pa·s) μw 1e?3
dynamic viscosity of gas (Pa·s) μg 1.8e?5
Tab.5  
Fig.10  
position x direction y direction water pressure
top free rigid impermeable
bottom rigid free constantP w=0.0 Pa
left rigid free impermeable
right rigid free impermeable
Tab.6  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
position x direction y direction water pressure air pressure
top free rigid impermeable constantP air=0.0 Pa
bottom rigid free constantP w=0.0 Pa constantP air=0.0 Pa
left rigid free impermeable impermeable
right rigid free impermeable impermeable
Tab.7  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
1 JTouma, M Vauclin. Experimental and numerical analysis of two-phase infiltration in a partially saturated soil. Transport in Porous Media, 1986, 1(1): 27–55
https://doi.org/10.1007/BF01036524
2 C RFaust, J H Guswa, J W Mercer. Simulation of three-dimensional flow of immiscible fluids within and below the unsaturated zone. Water Resources Research, 1989, 25(12): 2449–2464
https://doi.org/10.1029/WR025i012p02449
3 BAtaie-Ashtiani, D Raeesi-Ardekani. Comparison of numerical formulations for two-phase flow in porous media. Geotechnical and Geological Engineering, 2010, 28(4): 373–389
https://doi.org/10.1007/s10706-009-9298-4
4 L JDurlofsky. A triangle based mixed finite element—finite volume technique for modeling two phase flow through porous media. Journal of Computational Physics, 1993, 105(2): 252–266
https://doi.org/10.1006/jcph.1993.1072
5 P AForsyth, Y Wu, KPruess. Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media. Advances in Water Resources, 1995, 18(1): 25–38
https://doi.org/10.1016/0309-1708(95)00020-J
6 PJenny, S H Lee, H A Tchelepi. Adaptive multiscale finite-volume method for multiphase flow and transport in porous media. Multiscale Modeling & Simulation, 2005, 3(1): 50–64
https://doi.org/10.1137/030600795
7 WKlieber, B Rivière. Adaptive simulations of two-phase flow by discontinuous Galerkin methods. Computer Methods in Applied Mechanics and Engineering, 2006, 196(1‒3): 404–419
https://doi.org/10.1016/j.cma.2006.05.007
8 YEpshteyn, B Rivière. Fully implicit discontinuous finite element methods for two-phase flow. Applied Numerical Mathematics, 2007, 57(4): 383–401
https://doi.org/10.1016/j.apnum.2006.04.004
9 .Li OX, Zienkiewicz. Multiphase flow in deforming porous media and finite element solutions. Computers & Structures, 1992, 45(2): 211–227
https://doi.org/10.1016/0045-7949(92)90405-O
10 N ARahman, R W Lewis. Finite element modelling of multiphase immiscible flow in deforming porous media for subsurface systems. Computers and Geotechnics, 1999, 24(1): 41–63
https://doi.org/10.1016/S0266-352X(98)00029-9
11 LLaloui, G Klubertanz, LVulliet. Solid–liquid–air coupling in multiphase porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(3): 183–206
https://doi.org/10.1002/nag.269
12 GOettl, R Stark, GHofstetter. Numerical simulation of geotechnical problems based on a multi-phase finite element approach. Computers and Geotechnics, 2004, 31(8): 643–664
https://doi.org/10.1016/j.compgeo.2004.10.002
13 RStelzer, G Hofstetter. Adaptive finite element analysis of multi-phase problems in geotechnics. Computers and Geotechnics, 2005, 32(6): 458–481
https://doi.org/10.1016/j.compgeo.2005.06.003
14 CCallari, A Abati. Finite element methods for unsaturated porous solids and their application to dam engineering problems. Computers & Structures, 2009, 87(7‒8): 485–501
https://doi.org/10.1016/j.compstruc.2008.12.012
15 V PNguyen, H Lian, TRabczuk, SBordas. Modelling hydraulic fractures in porous media using flow cohesive interface elements. Engineering Geology, 2017, 225: 68–82
https://doi.org/10.1016/j.enggeo.2017.04.010
16 SSamimi, A Pak. Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method. Computers and Geotechnics, 2012, 46: 75–83
https://doi.org/10.1016/j.compgeo.2012.06.004
17 MGoudarzi, S Mohammadi. Weak discontinuity in porous media: an enriched EFG method for fully coupled layered porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(17): 1792–1822
https://doi.org/10.1002/nag.2281
18 MGoudarzi, S Mohammadi. Analysis of cohesive cracking in saturated porous media using an extrinsically enriched EFG method. Computers and Geotechnics, 2015, 63: 183–198
https://doi.org/10.1016/j.compgeo.2014.09.007
19 SSamimi, A Pak. A three-dimensional mesh-free model for analyzing multi-phase flow in deforming porous media. Meccanica, 2016, 51(3): 517–536
https://doi.org/10.1007/s11012-015-0231-z
20 TMohammadnejad, A Khoei. Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(10): 1247–1279
https://doi.org/10.1002/nag.2079
21 MGoodarzi, S Mohammadi, AJafari. Numerical analysis of rock fracturing by gas pressure using the extended finite element method. Petroleum Science, 2015, 12(2): 304–315
https://doi.org/10.1007/s12182-015-0017-x
22 TMohammadnejad, A R Khoei. An extended finite element method for hydraulic fracture propagation in deformable porous media with the cohesive crack model. Finite Elements in Analysis and Design, 2013, 73: 77–95
https://doi.org/10.1016/j.finel.2013.05.005
23 XZhuang, Q Wang, HZhu. A 3D computational homogenization model for porous material and parameters identification. Computational Materials Science, 2015, 96: 536–548
https://doi.org/10.1016/j.commatsci.2014.04.059
24 HZhu, Q Wang, XZhuang. A nonlinear semi-concurrent multiscale method for fractures. International Journal of Impact Engineering, 2016, 87: 65–82
https://doi.org/10.1016/j.ijimpeng.2015.06.022
25 HBayesteh, S Mohammadi. Micro-based enriched multiscale homogenization method for analysis of heterogeneous materials. International Journal of Solids and Structures, 2017, 125: 22–42
https://doi.org/10.1016/j.ijsolstr.2017.07.018
26 PFatemi Dehaghani, SHatefi Ardakani, HBayesteh, SMohammadi. 3D hierarchical multiscale analysis of heterogeneous SMA based materials. International Journal of Solids and Structures, 2017, 118–119: 24–40
https://doi.org/10.1016/j.ijsolstr.2017.04.025
27 A IBeltzer. Entropy characterization of finite elements. International Journal of Solids and Structures, 1996, 33(24): 3549–3560
https://doi.org/10.1016/0020-7683(95)00193-X
28 C EShannon. Communication theory of secrecy systems. Bell Labs Technical Journal, 1949, 28(4): 656–715
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x
29 NSukumar. Construction of polygonal interpolants: a maximum entropy approach. International Journal for Numerical Methods in Engineering, 2004, 61(12): 2159–2181
https://doi.org/10.1002/nme.1193
30 MArroyo, M Ortiz. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. International Journal for Numerical Methods in Engineering, 2006, 65(13): 2167–2202
https://doi.org/10.1002/nme.1534
31 DMillán, N Sukumar, MArroyo. Cell-based maximum-entropy approximants. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 712–731
https://doi.org/10.1016/j.cma.2014.10.012
32 AOrtiz, M Puso, NSukumar. Maximum-entropy meshfree method for compressible and near-incompressible elasticity. Computer Methods in Applied Mechanics and Engineering, 2010, 199(25): 1859–1871
https://doi.org/10.1016/j.cma.2010.02.013
33 AOrtiz, M Puso, NSukumar. Maximum-entropy meshfree method for incompressible media problems. Finite Elements in Analysis and Design, 2011, 47(6): 572–585
https://doi.org/10.1016/j.finel.2010.12.009
34 GQuaranta, S K Kunnath, N Sukumar. Maximum-entropy meshfree method for nonlinear static analysis of planar reinforced concrete structures. Engineering Structures, 2012, 42: 179–189
https://doi.org/10.1016/j.engstruct.2012.04.020
35 ZUllah, W Coombs, CAugarde. An adaptive finite element/meshless coupled method based on local maximum entropy shape functions for linear and nonlinear problems. Computer Methods in Applied Mechanics and Engineering, 2013, 267: 111–132
https://doi.org/10.1016/j.cma.2013.07.018
36 FAmiri, C Anitescu, MArroyo, S P ABordas, TRabczuk. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57
https://doi.org/10.1007/s00466-013-0891-2
37 FAmiri, D Millán, YShen, TRabczuk, MArroyo. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109
https://doi.org/10.1016/j.tafmec.2013.12.002
38 FAmiri, D Millán, MArroyo, MSilani, TRabczuk. Fourth order phase-field model for local max-ent approximants applied to crack propagation. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 254–275
https://doi.org/10.1016/j.cma.2016.02.011
39 CWu, D Young, HHong. Adaptive meshless local maximum-entropy finite element method for convection-diffusion problems. Computational Mechanics, 2014, 53(1): 189–200
https://doi.org/10.1007/s00466-013-0901-4
40 OKardani, M Nazem, MKardani, SSloan. On the application of the maximum entropy meshfree method for elastoplastic geotechnical analysis. Computers and Geotechnics, 2017, 84: 68–77
https://doi.org/10.1016/j.compgeo.2016.11.015
41 MNazem, M Kardani, BBienen, MCassidy. A stable maximum-entropy meshless method for analysis of porous media. Computers and Geotechnics, 2016, 80: 248–260
https://doi.org/10.1016/j.compgeo.2016.08.021
42 PNavas, S López-Querol, R CYu, BLi. Meshfree Methods Applied to Consolidation Problems in Saturated Soils. In: Weinberg K, Pandolfi A, eds. Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems. Springer, 2016, 241–264
43 PNavas, S López-Querol, R CYu, BLi. B-bar based algorithm applied to meshfree numerical schemes to solve unconfined seepage problems through porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(6): 962–984
https://doi.org/10.1002/nag.2472
44 PNavas, R C Yu, S López-Querol, BLi. Dynamic consolidation problems in saturated soils solved through uw formulation in a LME meshfree framework. Computers and Geotechnics, 2016, 79: 55–72
https://doi.org/10.1016/j.compgeo.2016.05.021
45 NZakrzewski, M Nazem, S WSloan, MCassidy et al. On application of the maximum entropy meshless method for large deformation analysis of geotechnical problems. In: Gu Y, Guan H, Sauret E, Saha S, Zhan H, Persky R, eds. Applied Mechanics and Materials. 2016. Trans Tech Publ, 331–335
46 R WLewis, B A Schrefler. The finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John Wiley& Sons, 1998
47 E TJaynes. On the rationale of maximum-entropy methods. Proceedings of the IEEE, 1982, 70(9): 939–952
https://doi.org/10.1109/PROC.1982.12425
48 S FGull, J Skilling. Maximum entropy method in image processing. In: IEE Proceedings F- Communications, Radar and Signal Processing. IET, 1984
49 AGolan, G G Judge, D Miller. Maximum Entropy Econometrics. John Wiley & Sons, 1996
50 . JKarmeshu. Entropy Measures, Maximum Entropy Principle and Emerging Applications. Springer Science & Business Media, 2003
51 E TJaynes. Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620–630
https://doi.org/10.1103/PhysRev.106.620
52 DGawin, P Baggio, B ASchrefler. Coupled heat, water and gas flow in deformable porous media. International Journal for Numerical Methods in Fluids, 1995, 20(8–9): 969–987 doi:10.1002/fld.1650200817
53 AKhoei, T Mohammadnejad. Numerical modeling of multiphase fluid flow in deforming porous media: a comparison between two-and three-phase models for seismic analysis of earth and rockfill dams. Computers and Geotechnics, 2011, 38(2): 142–166
https://doi.org/10.1016/j.compgeo.2010.10.010
54 B ASchrefler, RScotta. A fully coupled dynamic model for two-phase fluid flow in deformable porous media. Computer Methods in Applied Mechanics and Engineering, 2001, 190(24–25): 3223–3246
https://doi.org/10.1016/S0045-7825(00)00390-X
55 R HBrooks, A T Corey, 0. Hydraulic properties of porous media and their relation to drainage design. Transactions of the ASAE. American Society of Agricultural Engineers, 1964, 7(1): 26–28
https://doi.org/10.13031/2013.40684
56 J RBooker, J Small. Finite layer analysis of consolidation. I. International Journal for Numerical and Analytical Methods in Geomechanics, 1982, 6(2): 151–171
https://doi.org/10.1002/nag.1610060204
57 JBooker, J Small. A method of computing the consolidation behaviour of layered soils using direct numerical inversion of Laplace transforms. International Journal for Numerical and Analytical Methods in Geomechanics, 1987, 11(4): 363–380
https://doi.org/10.1002/nag.1610110405
58 RGibson, R Schiffman, SPu. Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base. Quarterly Journal of Mechanics and Applied Mathematics, 1970, 23(4): 505–520
https://doi.org/10.1093/qjmam/23.4.505
59 BAboustit, S Advani, JLee. Variational principles and finite element simulations for thermo-elastic consolidation. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(1): 49–69
https://doi.org/10.1002/nag.1610090105
60 A CLiakopoulos. Transient Flow Through Unsaturated Porous Media. Dissertation for PhD degree. University of California, Berkeley. 1964
61 T NNarasimhan, PWitherspoon. Numerical model for saturated-unsaturated flow in deformable porous media: 3. Applications. Water Resources Research, 1978, 14(6): 1017–1034
https://doi.org/10.1029/WR014i006p01017
62 BSchrefler, L Simoni. A unified approach to the analysis of saturated-unsaturated elastoplastic porous media. Numerical Methods in Geomechanics, 1988, 1: 205–212
63 OZienkiewicz, Y M Xie, B A Schrefler, A Ledesma, NBicanic. Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II. Semi-saturated problems. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1990
64 BSchrefler, Zhan X. A fully coupled model for water flow and airflow in deformable porous media. Water Resources Research, 1993, 29(1): 155–167
https://doi.org/10.1029/92WR01737
65 DGawin, B A Schrefler, M Galindo. Thermo-hydro-mechanical analysis of partially saturated porous materials. Engineering Computations, 1996, 13(7): 113–143
https://doi.org/10.1108/02644409610151584
66 .Wang WX, B Schrefler. Fully coupled thermo-hydro-mechanical analysis by an algebraic multigrid method. Engineering Computations, 2003, 20(2): 211–229
https://doi.org/10.1108/02644400310465326
67 WEhlers, T Graf, MAmmann. Deformation and localization analysis of partially saturated soil. Computer Methods in Applied Mechanics and Engineering, 2004, 193(27): 2885–2910
https://doi.org/10.1016/j.cma.2003.09.026
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed