Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2019, Vol. 13 Issue (2): 380-396   https://doi.org/10.1007/s11709-018-0471-9
  本期目录
A FEniCS implementation of the phase field method for quasi-static brittle fracture
HIRSHIKESH, Sundararajan NATARAJAN(), Ratna Kumar ANNABATTULA()
Integrated Modeling and Simulation Lab, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India
 全文: PDF(3273 KB)   HTML
Abstract

In the recent years, the phase field method for simulating fracture problems has received considerable attention. This is due to the salient features of the method: 1) it can be incorporated into any conventional finite element software; 2) has a scalar damage variable is used to represent the discontinuous surface implicitly and 3) the crack initiation and subsequent propagation and branching are treated with less complexity. Within this framework, the linear momentum equations are coupled with the diffusion type equation, which describes the evolution of the damage variable. The coupled nonlinear system of partial differential equations are solved in a ‘staggered’ approach. The present work discusses the implementation of the phase field method for brittle fracture within the open-source finite element software, FEniCS. The FEniCS provides a framework for the automated solutions of the partial differential equations. The details of the implementation which forms the core of the analysis are presented. The implementation is validated by solving a few benchmark problems and comparing the results with the open literature.

Key wordsphase field method    FEniCS    brittle fracture    crack propagation    variational theory of fracture
收稿日期: 2017-08-03      出版日期: 2019-03-12
Corresponding Author(s): Sundararajan NATARAJAN,Ratna Kumar ANNABATTULA   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 380-396.
HIRSHIKESH, Sundararajan NATARAJAN, Ratna Kumar ANNABATTULA. A FEniCS implementation of the phase field method for quasi-static brittle fracture. Front. Struct. Civ. Eng., 2019, 13(2): 380-396.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-018-0471-9
https://academic.hep.com.cn/fsce/CN/Y2019/V13/I2/380
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
  
  
  
1 JTrevelyan. Boundary Elements for Engineers: Theory and Applications, vol. 1. Southampton: Computational Mechanics, 1994
2 M HAliabadi. A new generation of boundary element methods in fracture mechanics. International Journal of Fracture, 1997, 86(1–2): 91–125
https://doi.org/10.1023/A:1007381025099
3 E TOoi, C Song, FTin-Loi, ZYang. Polygon scaled boundary finite elements for crack propagation modelling. International Journal for Numerical Methods in Engineering, 2012, 91(3): 319–342
https://doi.org/10.1002/nme.4284
4 TRabczuk, S Bordas, GZi. A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Computational Mechanics, 2007, 40(3): 473–495
https://doi.org/10.1007/s00466-006-0122-1
5 V PNguyen, T Rabczuk, SBordas, MDuflot. Meshless methods: a review and computer implementation aspects. Mathematics and Computers in Simulation, 2008, 79(3): 763–813
https://doi.org/10.1016/j.matcom.2008.01.003
6 PDechaumphai, S Phongthanapanich, TSricharoenchai. Combined Delaunay triangulation and adaptive finite element method for crack growth analysis. Acta Mechanica Sinica, 2003, 19(2): 162–171
7 NMoës, J Dolbow, TBelytschko. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
8 CWang, X Xu. An extended phantom node method study of crack propagation of composites under fatigue loading. Composite Structures, 2016, 154: 410–418
https://doi.org/10.1016/j.compstruct.2016.07.022
9 PAreias , M A Msekh, T Rabczuk. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143
10 I SAranson, V A Kalatsky, V M Vinokur. Continuum field description of crack propagation. Physical Review Letters, 2000, 85(1): 118–121
https://doi.org/10.1103/PhysRevLett.85.118
11 J JMarigo, C Maurini, KPham. An overview of the modelling of fracture by gradient damage models. Meccanica, 2016, 51(12): 3107–3128
https://doi.org/10.1007/s11012-016-0538-4
12 Rde Borst, C V Verhoosel. Gradient damage vs phase-field approaches for fracture: similarities and differences. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 78–94
https://doi.org/10.1016/j.cma.2016.05.015
13 S P ABordas, TRabczuk, N XHung, V PNguyen, SNatarajan, TBog, D M Quan, N V Hiep. Strain smoothing in FEM and XFEM. Computers & Structures, 2010, 88(23‒24): 1419–1443
https://doi.org/10.1016/j.compstruc.2008.07.006
14 HNguyen-Xuan, G R Liu, N Nourbakhshnia, LChen. A novel singular ES-FEM for crack growth simulation. Engineering Fracture Mechanics, 2012, 84: 41–66
15 HNguyen-Xuan, G R Liu, S Bordas, SNatarajan, T.RabczukAn adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods Applied Mechanics and Engineering, 2013, 253: 252–273
16 SNatarajan, S P A Bordas, E T Ooi. Virtual and smoothed finite elements: a connection and its application to polygonal/polyhedral finite element methods. International Journal for Numerical Methods in Engineering, 2015, 104(13): 1173–1199
https://doi.org/10.1002/nme.4965
17 AFrancis, A Ortiz-Bernardin, S P ABordas, SNatarajan. Linear smoothed polygonal and polyhedral finite elements. International Journal for Numerical Methods in Engineering, 2017, 109(9): 1263–1288
https://doi.org/10.1002/nme.5324
18 MSurendran, S Natarajan, S P ABordas, G SPalani. Linear smoothed extended finite element method. International Journal for Numerical Methods in Engineering, 2017, 112(12): 1733–1749
19 Abaqus. Abaqus documentation. Dassault Systmes Simulia Corp. , Provid. RI, USA, 2012
20 EGiner, N Sukumar, J ETarancón, F JFuenmayor. An Abaqus implementation of the extended finite element method. Engineering Fracture Mechanics, 2009, 76(3): 347–368
https://doi.org/10.1016/j.engfracmech.2008.10.015
21 JShi, D Chopp, JLua, NSukumar, TBelytschko. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Engineering Fracture Mechanics, 2010, 77(14): 2840–2863
https://doi.org/10.1016/j.engfracmech.2010.06.009
22 TRabczuk, G Zi, SBordas, HNguyen-Xuan. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
23 BBourdin, G A Francfort, J J Marigo. The Variational Approach to Fracture. Springer Netherlands, 2008
24 AMesgarnejad, B Bourdin, M MKhonsari. Validation simulations for the variational approach to fracture. Computer Methods in Applied Mechanics and Engineering, 2015, 290: 420–437
https://doi.org/10.1016/j.cma.2014.10.052
25 PAreias, T Rabczuk, M AMsekh. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 322–350
26 BBourdin, G A Francfort, J J Marigo. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797–826
https://doi.org/10.1016/S0022-5096(99)00028-9
27 J WCahn, J E Hilliard. Free energy of a nonuniform system. I. Interfacial free energy. Journal of Chemical Physics, 1958, 28(2): 258–267
https://doi.org/10.1063/1.1744102
28 L QChen, A G Khachaturyan. Computer simulation of structural transformations during precipitation of an ordered intermetallic phase. Acta Metallurgica et Materialia, 1991, 39(11): 2533–2551
https://doi.org/10.1016/0956-7151(91)90069-D
29 P KGalenko, D M Herlach, O Funke, PGandham. Phase-field modeling of dendritic solidification: verification for the model predictions with latest experimental data. In: Herlach D M, ed. Solidification and Crystallization. Wiley-VCH, 2005, 52–60
30 NMoelans, B Blanpain, PWollants. An introduction to phase-field modeling of microstructure evolution. Calphad, 2008, 32(2): 268–294
https://doi.org/10.1016/j.calphad.2007.11.003
31 G AFrancfort, J JMarigo. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319–1342
https://doi.org/10.1016/S0022-5096(98)00034-9
32 M JBorden, C V Verhoosel, M A Scott, T J R Hughes, C M Landis. A phase-field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering, 2012, 217: 77–95
https://doi.org/10.1016/j.cma.2012.01.008
33 ASchlüter, A Willenbücher, CKuhn, RMüller. Phase field approximation of dynamic brittle fracture. Computational Mechanics, 2014, 54(5): 1141–1161
https://doi.org/10.1007/s00466-014-1045-x
34 ARaina, C Miehe. A phase-field model for fracture in biological tissues. Biomechanics and Modeling in Mechanobiology, 2016, 15(3): 479–496
https://doi.org/10.1007/s10237-015-0702-0
35 CMiehe, F Aldakheel, ARaina. Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. International Journal of Plasticity, 2016, 84: 1–32
https://doi.org/10.1016/j.ijplas.2016.04.011
36 MAmbati, T Gerasimov, LDe Lorenzis. Phase-field modeling of ductile fracture. Computational Mechanics, 2015, 55(5): 1017–1040
https://doi.org/10.1007/s00466-015-1151-4
37 MAmbati, R Kruse, LDe Lorenzis. A phase-field model for ductile fracture at finite strains and its experimental verification. Computational Mechanics, 2016, 57(1): 149–167
https://doi.org/10.1007/s00466-015-1225-3
38 CKuhn, R Müller. Phase field simulation of thermomechanical fracture. Proceedings in Applied Mathematics and Mechanics, 2009, 9(1): 191–192
https://doi.org/10.1002/pamm.200910070
39 ASchlüter, C Kuhn, RMüller, MTomut, CTrautmann, HWeick, CPlate. Phase field modelling of dynamic thermal fracture in the context of irradiation damage. Continuum Mechanics and Thermodynamics, 2017, 29(4): 977–988
https://doi.org/10.1007/s00161-015-0456-z
40 M AMsekh, J M Sargado, M Jamshidian, P MAreias, TRabczuk. Abaqus implementation of phase-field model for brittle fracture. Computational Materials Science, 2015, 96: 472–484
https://doi.org/10.1016/j.commatsci.2014.05.071
41 GLiu, Q Li, M AMsekh, ZZuo. Abaqus implementation of monolithic and staggered schemes for quasi-static and dynamic fracture phase-field mode. Computational Materials Science, 2016, 121: 35–47
https://doi.org/10.1016/j.commatsci.2016.04.009
42 GMolnár, A Gravouil. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture. Finite Elements in Analysis and Design, 2017, 130: 27–38
https://doi.org/10.1016/j.finel.2017.03.002
43 T TNguyen, J Yvonnet, MBornert, CChateau, KSab, R Romani, RLe Roy. On the choice of parameters in the phase field method for simulating crack initiation with experimental validation. International Journal of Fracture, 2016, 197(2): 213–226
https://doi.org/10.1007/s10704-016-0082-1
44 MAmbati, T Gerasimov, LDe Lorenzis. A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computational Mechanics, 2015, 55(2): 383–405
https://doi.org/10.1007/s00466-014-1109-y
45 M SAlnæs, JBlechta, HHake, A Hoansson, BKehlet, ALogg, C Richardson, JRing, M ERognes, G NWells. The FEniCS Project Version 1.5. Archive of Numerical Software, 2015, 3(100): 9–23
46 ALogg, K A Mardal, G N Wells. Automated Solution of Differential Equations by the Finite Element Method. Berlin: Springer, 2012
47 CMiehe, F Welschinger, MHofacker. Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311
https://doi.org/10.1002/nme.2861
48 HAmor, J J Marigo, C Maurini. Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1209–1229
https://doi.org/10.1016/j.jmps.2009.04.011
49 NMoës, C Stolz, P EBernard, NChevaugeon. A level set based model for damage growth: the thick level set approach. International Journal for Numerical Methods in Engineering, 2011, 86(3): 358–380
https://doi.org/10.1002/nme.3069
50 CMiehe, M Hofacker, FWelschinger. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45): 2765–2778
https://doi.org/10.1016/j.cma.2010.04.011
51 N N VPrasad, M HAliabadi, D PRooke. Incremental crack growth in thermoelastic problems. International Journal of Fracture, 1994, 66(3): R45–R50
https://doi.org/10.1007/BF00042591
52 MDuflot. The extended finite element method in thermoelastic fracture mechanics. International Journal for Numerical Methods in Engineering, 2008, 74(5): 827–847
https://doi.org/10.1002/nme.2197
53 P OBouchard, F Bay, YChastel. Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria. Computer Methods in Applied Mechanics and Engineering, 2003, 192(35–36): 3887–3908
https://doi.org/10.1016/S0045-7825(03)00391-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed