Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2019, Vol. 13 Issue (2): 406-416   https://doi.org/10.1007/s11709-018-0475-5
  本期目录
High-order phase-field model with the local and second-order max-entropy approximants
Fatemeh AMIRI1,2()
1. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
2. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
 全文: PDF(998 KB)   HTML
Abstract

We approximate the fracture surface energy functional based on phase-field method with smooth local maximum entropy (LME) and second-order maximum entropy (SME) approximants. The higher-order continuity of the meshfree methods such as LME and SME approximants allows to directly solve the fourth-order phase-field equations without splitting the fourth-order differential equation into two second-order differential equations. We will first show that the crack surface functional can be captured more accurately in the fourth-order model with smooth approximants such as LME, SME and B-spline. Furthermore, smaller length scale parameter is needed for the fourth-order model to approximate the energy functional. We also study SME approximants and drive the formulations. The proposed meshfree fourth-order phase-field formulation show more stable results for SME compared to LME meshfree methods.

Key wordssecond-order maximum entropy    local maximum entropy    second- and fourth-order phase-field models    B-spline
收稿日期: 2017-08-15      出版日期: 2019-03-12
Corresponding Author(s): Fatemeh AMIRI   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 406-416.
Fatemeh AMIRI. High-order phase-field model with the local and second-order max-entropy approximants. Front. Struct. Civ. Eng., 2019, 13(2): 406-416.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-018-0475-5
https://academic.hep.com.cn/fsce/CN/Y2019/V13/I2/406
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 FAmiri, C Anitescu, MArroyo, S P ABordas, TRabczuk. XLME interpolants, a seamless bridge between XFEM and enriched meshless methods. Computational Mechanics, 2014, 53(1): 45–57 doi:10.1007/BF00052492
https://doi.org/10.1007/s00466-013-0891-2
2 D HWinne, B M Wundt. Application of the Griffith-Irwin theory of crack propagation to the bursting behavior of disks, including analytical and experimental studies. Transactions of the American Society of Mechanical Engineers, 1958, 80: 1643–1655
3 PAreias, T Rabczuk. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
https://doi.org/10.1002/nme.4477
4 PAreias, T Rabczuk, P PCamanho. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63
https://doi.org/10.1016/j.tafmec.2014.06.006
5 PAreias, T Rabczuk, DDias da Costa. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137
https://doi.org/10.1016/j.engfracmech.2013.06.006
6 HNguyen-Xuan, G R Liu, S Bordas, SNatarajan, TRabczuk. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252–273
https://doi.org/10.1016/j.cma.2012.07.017
7 TBelytschko, T Black. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
8 NMoës, J Dolbow, TBelytschko. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
9 TStrouboulis, I Babuska, KCopps. The design and analysis of the generalized finite element method. Computer Methods in Applied Mechanics and Engineering, 2000, 181(1–3): 43–69
https://doi.org/10.1016/S0045-7825(99)00072-9
10 .Ma G, An X, He L. The numerical manifold method: A review. International Journal of Computational Methods, 2010, 7(1): 1–32
https://doi.org/10.1142/S0219876210002040
11 GBhardwaj, I V Singh, B K Mishra, T Q Bui. Numerical simulation of functionally graded cracked plates using {NURBS} based {XIGA} under different loads and boundary conditions. Composite Structures, 2015, 126: 347–359
https://doi.org/10.1016/j.compstruct.2015.02.066
12 S ShGhorashi, NValizadeh, SMohammadi, TRabczuk. T-spline based {XIGA} for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146
https://doi.org/10.1016/j.compstruc.2014.09.017
13 NNguyen-Thanh, N Valizadeh, M NNguyen, HNguyen-Xuan, XZhuang, PAreias, GZi, Y Bazilevs, LDe Lorenzis, TRabczuk. An extended isogeometric thin shell analysis based on Kirchhoff-Love theory. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 265–291
https://doi.org/10.1016/j.cma.2014.08.025
14 FAmiri, D Millan, YShen, TRabczuk, MArroyo. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69(2): 102–109
https://doi.org/10.1016/j.tafmec.2013.12.002
15 SLi, W K Liu. Meshfree and particle methods and their applications. Applied Mechanics Reviews, 2002, 55(1): 1–34
https://doi.org/10.1115/1.1431547
16 TRabczuk, S Bordas, GZi. On three-dimensional modelling of crack growth using partition of unity methods. Computers & Structures, 2010, 88(23–24): 1391–1411
https://doi.org/10.1016/j.compstruc.2008.08.010
17 SWang, H Zhang. Partition of unity-based thermomechanical meshfree method for two-dimensional crack problems. Archive of Applied Mechanics, 2011, 81(10): 1351–1363
https://doi.org/10.1007/s00419-010-0487-7
18 XZhuang, Y Cai, CAugarde. A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields. Theoretical and Applied Fracture Mechanics, 2014, 69: 118–125
https://doi.org/10.1016/j.tafmec.2013.12.003
19 TRabczuk, T Belytschko. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
20 TRabczuk, T Belytschko. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29–30): 2777–2799
https://doi.org/10.1016/j.cma.2006.06.020
21 Rde Borst. Damage, Material Instabilities, and Failure. Hoboken: John Wiley & Sons, 2004
22 Rde Borst, A Benallal, O M.Heeres A gradient-enhanced damage approach to fracture. Journal de Physique Archives IV France, 1996, 6(C6): 491–502
23 JLiang, Z Zhang, J HPrevost, ZSuo. Time-dependent crack behavior in an integrated structure. International Journal of Fracture, 2004, 125(3–4): 335–348
https://doi.org/10.1023/B:FRAC.0000022238.52635.88
24 R H JPeerlings, Rde Borst, W A MBrekelmans, J H PDe Vree. Gradient enhanced damage for quasi-brittle materials. International Journal for Numerical Methods in Engineering, 1996, 39(19): 3391–3403
https://doi.org/10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
25 R H JPeerlings, Rde Borst, W A MBrekelmans, J H Pde Vree, ISpee. Some observations on localization in non-local and gradient damage models. European Journal of Mechanics. A, Solids, 1996, 15(6): 937–953
26 L JSluys, R de Borst. Dispersive properties of gradient-dependent and rate-dependent media. Mechanics of Materials, 1994, 18(2): 131–149
https://doi.org/10.1016/0167-6636(94)00009-3
27 ZBažant. Imbricate continuum and its variational derivation. Journal of Engineering Mechanics, 1984, 110(12): 1693–1712
https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1693)
28 ZBažant, T P Chang. Instability of nonlocal continuum and strain averaging. Journal of Engineering Mechanics, 1984, 110(10): 1441–1450
https://doi.org/10.1061/(ASCE)0733-9399(1984)110:10(1441)
29 ZBažant, M Jirasek. Nonlocal integral formulations of plasticity and damage: Survey of progress. Journal of Engineering Mechanics, 2002, 128(11): 1119–1149
https://doi.org/10.1061/(ASCE)0733-9399(2002)128:11(1119)
30 ZBažant, F B Lin. Nonlocal smeared cracking model for concrete fracture. Journal of Structural Engineering, 1988, 114(11): 2493–2510
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:11(2493)
31 PAreias, T Rabczuk, J Cde Sá. A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Computational Mechanics, 2016, 58(6): 1003–1018
https://doi.org/10.1007/s00466-016-1328-5
32 PAreias, M A Msekh, T Rabczuk. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158(Suppl C): 116–143
https://doi.org/10.1016/j.engfracmech.2015.10.042
33 MHofacker, C Miehe. A phase field model of dynamic fracture: Robust field updates for the analysis of complex crack patterns. International Journal for Numerical Methods in Engineering, 2013, 93(3): 276–301
https://doi.org/10.1002/nme.4387
34 CMiehe, F Welschinger, MHofacker. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 2010, 83(10): 1273–1311
https://doi.org/10.1002/nme.2861
35 DMumford, J Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 1989, 42(5): 577–685
https://doi.org/10.1002/cpa.3160420503
36 LAmbrosio. Variational problems in SBV and image segmentation. Acta Applicandae Mathematicae, 1989, 17(1): 1–40
https://doi.org/10.1007/BF00052492
37 LAmbrosio, V M Tortorelli. Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Communications on Pure and Applied Mathematics, 1990, 43(8): 999–1036
https://doi.org/10.1002/cpa.3160430805
38 HGómez, V M Calo, Y Bazilevs, T J RHughes. Isogeometric analysis of the Cahn-Hilliard phase-field model. Computer Methods in Applied Mechanics and Engineering, 2008, 197(49–50): 4333–4352
https://doi.org/10.1016/j.cma.2008.05.003
39 Esedoglu S, Shen J. Digital inpainting based on the Mumford-Shah-Euler image model. European Journal of Applied Mathematics, 2002, 13(4): 353–370
https://doi.org/10.1017/S0956792502004904
40 FAmiri, D Millan, MArroyo, MSilani, TRabczuk. Fourth order phase-field model for local max-ent approximants applied to crack propagation. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 254–275
https://doi.org/10.1016/j.cma.2016.02.011
41 BBourdin, G A Francfort, J J Marigo. The variational approach to fracture. Journal of Elasticity, 2008, 91(1–3): 5–148
https://doi.org/10.1007/s10659-007-9107-3
42 G AFrancfort, J JMarigo. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319–1342
https://doi.org/10.1016/S0022-5096(98)00034-9
43 M JBorden, C V Verhoosel, M A Scott, T J R Hughes, C M Landis. A phase-field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering, 2012, 217–220: 77–95
https://doi.org/10.1016/j.cma.2012.01.008
44 PAreias, T Rabczuk, M AMsekh. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312(Suppl C): 322–350
https://doi.org/10.1016/j.cma.2016.01.020
45 JKiendl, M Ambati, LDe Lorenzis, HGomez, AReali. Phase-field description of brittle fracture in plates and shells. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 374–394
https://doi.org/10.1016/j.cma.2016.09.011
46 T J RHughes, J ACottrell, YBazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39–41): 4135–4195
https://doi.org/10.1016/j.cma.2004.10.008
47 NSukumar. Construction of polygonal interpolants: A maximum entropy approach. International Journal for Numerical Methods in Engineering, 2004, 61(12): 2159–2181
https://doi.org/10.1002/nme.1193
48 C EShannon. A mathematical theory of communication. Sigmobile Mobile Computing & Communications Review, 2001, 5(1): 3–55
https://doi.org/10.1145/584091.584093
49 E T.Jaynes Information theory and statistical mechanics. Physical Review, 1957, 106(4): 620–630
https://doi.org/10.1103/PhysRev.106.620
50 E TJaynes. Information theory and statistical mechanics. II. Physical Review, 1957, 108(2): 171–190
https://doi.org/10.1103/PhysRev.108.171
51 MArroyo, M Ortiz. Local maximum-entropy approximation schemes: A seamless bridge between finite elements and meshfree methods. International Journal for Numerical Methods in Engineering, 2006, 65(13): 2167–2202
https://doi.org/10.1002/nme.1534
52 DShepard. A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference. New York: ACM, 1968, 517–524
53 ARosolen, D Millan, MArroyo. Second-order convex maximum entropy approximants with applications to high-order PDE. International Journal for Numerical Methods in Engineering, 2013, 94(2): 150–182
https://doi.org/10.1002/nme.4443
54 C JCyron, M Arroyo, MOrtiz. Smooth, second order, non-negative meshfree approximants selected by maximum entropy. International Journal for Numerical Methods in Engineering, 2009, 79(13): 1605–1632
https://doi.org/10.1002/nme.2597
55 AOrtiz, M A Puso, N Sukumar. Maximum-entropy meshfree method for incompressible media problems. Finite Elements in Analysis and Design, 2011, 47(6): 572–585
https://doi.org/10.1016/j.finel.2010.12.009
56 DMillán, A Rosolen, MArroyo. Thin shell analysis from scattered points with maximum-entropy approximants. International Journal for Numerical Methods in Engineering, 2011, 85(6): 723–751
https://doi.org/10.1002/nme.2992
57 DMillán, A Rosolen, MArroyo. Nonlinear manifold learning for meshfree finite deformations thin shell analysis. International Journal for Numerical Methods in Engineering, 2013, 93(7): 685–713
https://doi.org/10.1002/nme.4403
58 AOrtiz, M A Puso, N Sukumar. Maximum-entropy meshfree method for compressible and near-incompressible elasticity. Computer Methods in Applied Mechanics and Engineering, 2010, 199(25–28): 1859–1871
https://doi.org/10.1016/j.cma.2010.02.013
59 TBelytschko, Y Y Lu, L Gu. Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229–256
https://doi.org/10.1002/nme.1620370205
60 ARosolen, D Millan, MArroyo. On the optimum support size in meshfree methods: A variational adaptivity approach with maximum entropy approximants. International Journal for Numerical Methods in Engineering, 2010, 82(7): 868–895
61 CShannon. A mathematical theory of communication. Bell System Technical Journal, 1948, 27(4): 623–656
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
62 NSukumar, B Moran, TBelytschko. The natural element method in solid mechanics. International Journal for Numerical Methods in Engineering, 1998, 43(5): 839–887
https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R
63 FCirak, M Ortiz, PSchröder. Subdivision surfaces: A new paradigm for thin-shell finite-element analysis. International Journal for Numerical Methods in Engineering, 2000, 47(12): 2039–2072
https://doi.org/10.1002/(SICI)1097-0207(20000430)47:12<2039::AID-NME872>3.0.CO;2-1
64 V TRajan. Optimality of the Delaunay triangulation in Rd. Discrete & Computational Geometry, 1994, 12(2): 189–202
https://doi.org/10.1007/BF02574375
65 M JBorden, T J R Hughes, C M Landis, C V Verhoosel. A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework. Computer Methods in Applied Mechanics and Engineering, 2014, 273(5): 100–118
https://doi.org/10.1016/j.cma.2014.01.016
66 AApostolatos, R Schmidt, RWüchner, K UBletzinger. A Nitsche-type formulation and comparison of the most common domain decomposition methods in isogeometric analysis. International Journal for Numerical Methods in Engineering, 2014, 97(7): 473–504
https://doi.org/10.1002/nme.4568
67 T J RHughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. New York: Dover Publications, 2000
68 J ACottrell, T J R Hughes, Y Bazilevs. Isogeometric Analysis: Toward Integration of CAD and FEA. Chichester: Wiley, 2009
69 LPiegl, W Tiller. The NURBS Book. 2nd ed. New York: Springer, 1997
70 YBazilevs, V M Calo, J A Cottrell, J A Evans, T J R Hughes, S Lipton, M AScott, T WSederberg. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering, 2010, 199(5–8): 229–263
https://doi.org/10.1016/j.cma.2009.02.036
71 D FRogers. An Introduction to NURBS With Historical Perspective. San Diego: Academic Press, 2001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed