Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2019, Vol. 13 Issue (2): 417-428   https://doi.org/10.1007/s11709-018-0477-3
  本期目录
Implementation aspects of a phase-field approach for brittle fracture
G. D. HUYNH1(), X. ZHUANG1(), H. NGUYEN-XUAN2
1. Institute of Continuum Mechanics, Leibniz-Universität Hannover, 30167 Hannover, Germany
2. Center for Interdisciplinary Research in Technology, Ho Chi Minh City, University of Technology (HUTEH), Ho Chi Minh City, Vietnam
 全文: PDF(1555 KB)   HTML
Abstract

This paper provides a comprehensive overview of a phase-field model of fracture in solid mechanics setting. We start reviewing the potential energy governing the whole process of fracture including crack initiation, branching or merging. Then, a discretization of system of equation is derived, in which the key aspect is that for the correctness of fracture phenomena, a split into tensile and compressive terms of the strain energy is performed, which allows crack to occur in tension, not in compression. For numerical analysis, standard finite element shape functions are used for both primary fields including displacements and phase field. A staggered scheme which solves the two fields of the problem separately is utilized for solution step and illustrated with a segment of Python code.

Key wordsphase-field modeling    FEM    staggered scheme    fracture
收稿日期: 2017-08-25      出版日期: 2019-03-12
Corresponding Author(s): G. D. HUYNH,X. ZHUANG   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 417-428.
G. D. HUYNH, X. ZHUANG, H. NGUYEN-XUAN. Implementation aspects of a phase-field approach for brittle fracture. Front. Struct. Civ. Eng., 2019, 13(2): 417-428.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-018-0477-3
https://academic.hep.com.cn/fsce/CN/Y2019/V13/I2/417
Fig.1  
Fig.2  
Fig.3  
parameter unit description value
μ N/mm2 shear modulus 80.77 × 103
λ N/mm2 bulk modulus 121.15 × 103
V Poisson’s ratio 0.3
E N/mm2 Young’s modulus 2.09 × 105
gc N/mm energy release rate 2.7
lc mm length scale 0.015
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
parameter unit name value
μ N/mm2 shear modulus 8.0 × 103
λ N/mm2 bulk modulus 12.00 × 103
V Poisson’s ratio 0.3
E N/mm2 Young’s modulus 2.08 × 104
gc N/mm energy release rate 0.5
lc mm length scale 0.03
Tab.2  
Fig.8  
Fig.9  
Fig.10  
parameter unit name value
μ N/mm2 shear modulus 8.0 × 103
λ N/mm2 bulk modulus 12.00 × 103
v Poisson’s ratio 0.3
E N/mm2 Young’s modulus 2.08 × 104
gc N/mm energy release rate 1
lc mm length scale 0.01
Tab.3  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
parameter unit name value
μ N/mm2 shear modulus 1.94 × 103
λ N/mm2 bulk modulus 2.45 × 103
v Poisson’s ratio 0.22
E N/mm2 Young’s modulus 2.09 × 105
gc N/mm energy release rate 2.28
lc mm length scale 0.1
Tab.4  
Fig.15  
Fig.16  
def SolveStaggeredOneStep(self):
# phase?field dofs are frozen
free_node_list= []
for not node.IsFixed(PHASE FIELD):
free_node_list .append(node)
node . Fix (PHASE FIELD)
# displacements are solved and updated
self.model part.ProcessInfo[FRACTIONAL STEP] = 0
converged= self.SolveOneStep()
for node in self.model_part.Nodes:
if node.IsFixed(DISPLACEMENT_X) and node.SolutionStepsDataHas(PRESCRIBED_DELTA _DISPLACEMENT
ux= node . GetSolutionStepValue (DISPLACEMENT_X)
dux= node . GetSolutionStepValue (PRESCRIBED_DELTA _DISPLACEMENT_X) node.SetSolutionStepValue(DISPLACEMENT_X, ux+ dux)
if node.IsFixed(DISPLACEMENT_Y) and node.SolutionStepsDataHas(PRESCRIBED_DELTA _DISPLACEMENT
uy= node . GetSolutionStepValue (DISPLACEMENT_Y)
duy= node . GetSolutionStepValue (PRESCRIBED_DELTA DISPLACEMENT_Y) node.SetSolutionStepValue(DISPLACEMENT_Y, uy+ duy)
if node.IsFixed(DISPLACEMENT Z) and node.SolutionStepsDataHas(PRESCRIBED_DELTA DISPLACEMENT
uz= node . GetSolutionStepValue (DISPLACEMENT Z)
duz= node . GetSolutionStepValue (PRESCRIBED_DELTA _DISPLACEMENT_Z) node.SetSolutionStepValue(DISPLACEMENT_Z, uz+ duz)
# phase?field dofs are unfrozen
for node in free_node_list :
node . Free (PHASE FIELD)
# displacement dofs are frozen
free_node_list_x= []
free_node_list_y= []
free_node_list_z= []
for node in self.model part.Nodes:
if not node.IsFixed(DISPLACEMENT_X):
free_node_list_x. append (node)
node. Fix (DISPLACEMENT_X)
if not node.IsFixed(DISPLACEMENT_Y):
free_node_list_y .append(node)
node. Fix (DISPLACEMENT_Y)
if not node.IsFixed (DISPLACEMENT_Z):
free_node_list_z. append (node)
node. Fix (DISPLACEMENT_Z)
# phase field are solved and updated
self.model_part.ProcessInfo[FRACTIONAL_STEP] = 1
converged= self.SolveOneStep()
print(”Solve for phase field completed”)
# displacement dofs are unfrozen
for node in free_node_list_x :
node. Free (DISPLACEMENT_X)
for node in free_node_list_y :
node. Free (DISPLACEMENT_Y)
for node in free_node_list_z :
node. Free (DISPLACEMENT_Z)
  
1 P RBudarapu, R Gracie, S WYang, XZhuang, TRabczuk. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143
https://doi.org/10.1016/j.tafmec.2013.12.004
2 HTalebi, M Silani, S P ABordas, PKerfriden, TRabczuk. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071
https://doi.org/10.1007/s00466-013-0948-2
3 A AGriffith. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1921, 221(582–593): 163–198
https://doi.org/10.1098/rsta.1921.0006
4 G RIrwin. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics, 1957, 24: 361–364
5 NMoës, J Dolbow, TBelytschko. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46(1): 131–150
https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
6 TRabczuk, T Belytschko. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
7 TRabczuk, G Zi. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760
https://doi.org/10.1007/s00466-006-0067-4
8 TRabczuk, G Zi, AGerstenberger, W AWall. A new crack tip element for the phantom-node method with arbitrary cohesive cracks. International Journal for Numerical Methods in Engineering, 2008, 75(5): 577–599
https://doi.org/10.1002/nme.2273
9 TRabczuk, P M A Areias, T Belytschko. A meshfree thin shell method for non-linear dynamic fracture. International Journal for Numerical Methods in Engineering, 2007, 72(5): 524–548
https://doi.org/10.1002/nme.2013
10 TRabczuk, G Zi, SBordas, HNguyen-Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455
https://doi.org/10.1016/j.cma.2010.03.031
11 J J CRemmers, Rde Borst, ANeedleman. The simulation of dynamic crack propagation using the cohesive segments method. Journal of the Mechanics and Physics of Solids, 2008, 56(1): 70–92
https://doi.org/10.1016/j.jmps.2007.08.003
12 T QThai, T Rabczuk, YBazilevs, GMeschke. A higher-order stress-based gradient-enhanced damage model based on isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 2016, 304: 584–604
https://doi.org/10.1016/j.cma.2016.02.031
13 S SGhorashi, N Valizadeh, SMohammadi, TRabczuk. T-spline based XIGA for fracture analysis of orthotropic media. Computers & Structures, 2015, 147: 138–146
https://doi.org/10.1016/j.compstruc.2014.09.017
14 XXu, A Needleman. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397–1434
https://doi.org/10.1016/0022-5096(94)90003-5
15 CMiehe, E Gürses. A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment. International Journal for Numerical Methods in Engineering, 2007, 72(2): 127–155
https://doi.org/10.1002/nme.1999
16 PAreias, T Rabczuk. Finite strain fracture of plates and shells with configurational forces and edge rotation. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
https://doi.org/10.1002/nme.4477
17 G AFrancfort, J JMarigo. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319–1342
https://doi.org/10.1016/S0022-5096(98)00034-9
18 BBourdin, G A Francfort, J J Marigo. The variational approach to fracture. Journal of Elasticity, 1998, 91(1–3): 5–148
https://doi.org/10.1007/s10659-007-9107-3
19 VHakim, A Karma. Laws of crack motion and phase-field models of fracture. Journal of the Mechanics and Physics of Solids, 2009, 57(2): 342–368
https://doi.org/10.1016/j.jmps.2008.10.012
20 CMiehe, M Hofacker, FWelschinger. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45–48): 2765–2778
https://doi.org/10.1016/j.cma.2010.04.011
21 FAmiri, D Millan, MArroyo, MSilani, TRabczuk. Fourth order phase-field model for local max-ent approximants applied to crack propagation. Computer Methods in Applied Mechanics and Engineering, 2016, 312(C): 254–275
https://doi.org/10.1016/j.cma.2016.02.011
22 M JBorden, V V Verhoosel, M A Scott, T J R Hughes, C M Landis. A phase-field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering, 2012, 217–220: 77–95
https://doi.org/10.1016/j.cma.2012.01.008
23 PAreias, T Rabczuk. Steiner-point free edge cutting of tetrahedral meshes with applications in fracture. Finite Elements in Analysis and Design, 2017, 132: 27–41
https://doi.org/10.1016/j.finel.2017.05.001
24 PAreias, T Rabczuk, J Cde Sá. A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Computational Mechanics, 2016, 58(6): 1003–1018
https://doi.org/10.1007/s00466-016-1328-5
25 PAreias, M A Msekh, T Rabczuk. Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143
https://doi.org/10.1016/j.engfracmech.2015.10.042
26 PAreias, J Reinoso, PCamanho, TRabczuk. A constitutive-based element-by-element crack propagation algorithm with local remeshing. Computational Mechanics, 2015, 56(2): 291–315
https://doi.org/10.1007/s00466-015-1172-z
27 P M AAreias, TRabczuk, P PCamanho. Finite strain fracture of 2D problems with injected anisotropic softening elements. Theoretical and Applied Fracture Mechanics, 2014, 72: 50–63
https://doi.org/10.1016/j.tafmec.2014.06.006
28 PAreias, T Rabczuk, DDias-da-Costa. Element-wise fracture algorithm based on rotation of edges. Engineering Fracture Mechanics, 2013, 110: 113–137
https://doi.org/10.1016/j.engfracmech.2013.06.006
29 PAreias, T Rabczuk, P PCamanho. Initially rigid cohesive laws and fracture based on edge rotations. Computational Mechanics, 2013, 52(4): 931–947
https://doi.org/10.1007/s00466-013-0855-6
30 FAmiri, D Millán, YShen, TRabczuk, MArroyo. Phase-field modeling of fracture in linear thin shells. Theoretical and Applied Fracture Mechanics, 2014, 69: 102–109
https://doi.org/10.1016/j.tafmec.2013.12.002
31 PAreias, T Rabczuk, MMsekh. Phase-field analysis of finite-strain plates and shells including element subdivision. Computer Methods in Applied Mechanics and Engineering, 2016, 312(C): 322–350
https://doi.org/10.1016/j.cma.2016.01.020
32 M AMsekh, H Nguyen-Cuong, GZi, PAreias, XZhuang, TRabczuk. Fracture properties prediction of clay/epoxy nanocomposites with interphase zones using a phase field model. Engineering Fracture Mechanics, 2017
https://doi.org/10.1016/j.engfracmech.2017.08.002
33 M AMsekh, M Silani, MJamshidian, PAreias, XZhuang, GZi, P He, TRabczuk. Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Composites. Part B, Engineering, 2016, 93: 97–114
https://doi.org/10.1016/j.compositesb.2016.02.022
34 KHamdia, M A Msekh, M Silani, NVu-Bac, XZhuang, TNguyen-Thoi, TRabczuk. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190
https://doi.org/10.1016/j.compstruct.2015.08.051
35 MAmbati, T Gerasimov, LDe Lorenzis. Phase-field modeling of ductile fracture. Computer Methods in Applied Mechanics and Engineering, 2015, 55: 1017–1040
https://doi.org/10.1007/s00466-015-1151-4
36 PAreias, D Dias-da-Costa, J MSargado, TRabczuk. Element-wise algorithm for modeling ductile fracture with the Rousselier yield function. Computational Mechanics, 2013, 52(6): 1429–1443
https://doi.org/10.1007/s00466-013-0885-0
37 SMauthe, C Miehe. Hydraulic fracture in poro-hydro-elastic media. Mechanics Research Communications, 2017, 80: 69–83
https://doi.org/10.1016/j.mechrescom.2016.09.009
38 MFranke, C Hesch, MDittmann. Phase-field approach to fracture for finite deformation contact problems. Proceedings in Applied Mathematics and Mechanics, 2016, 16(1): 123–124
https://doi.org/10.1002/pamm.201610050
39 E Ade Souza Neto, DPetric, D R JOwen. Computational Methods for Plasticity: Theory and Applications. Chichester: Wiley, 2008
40 HRen, X Zhuang, TRabczuk. Dual-horizon peridynamics: A stable solution to varying horizons. Computer Methods in Applied Mechanics and Engineering, 2017, 318: 762–782
https://doi.org/10.1016/j.cma.2016.12.031
41 NSingh, C Verhoosel, Rde Borst, Evan Brummelen. A fracture-controlled path-following technique for phase-field modeling of brittle fracture. Finite Elements in Analysis and Design, 2016, 113: 14–29
https://doi.org/10.1016/j.finel.2015.12.005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed