Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2019, Vol. 13 Issue (2): 288-293   https://doi.org/10.1007/s11709-018-0480-8
  本期目录
Evaluating the material strength from fracture angle under uniaxial loading
Jitang FAN1,2()
1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
2. Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
 全文: PDF(723 KB)   HTML
Abstract

The most common experimental methods of measuring material strength are the uniaxial compressive and tensile tests. Generally, shearing fracture model occurs in both the tests. Compressive strength is higher than tensile strength for a material. Shearing fracture angle is smaller than 45° under uniaxial compression and greater than 45° under uniaxial tension. In this work, a unified relation of material strength under uniaxial compression and tension is developed by correlating the shearing fracture angle in theory. This constitutive relation is quantitatively illustrated by a function for analyzing the material strength from shear fracture angle. A computational simulation is conducted to validate this theoretical function. It is full of interest to give a scientific illustration for designing the high-strength materials and engineering structures.

Key wordsstrength    fracture    mechanics
收稿日期: 2017-06-14      出版日期: 2019-03-12
Corresponding Author(s): Jitang FAN   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 288-293.
Jitang FAN. Evaluating the material strength from fracture angle under uniaxial loading. Front. Struct. Civ. Eng., 2019, 13(2): 288-293.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-018-0480-8
https://academic.hep.com.cn/fsce/CN/Y2019/V13/I2/288
Fig.1  
Fig.2  
Fig.3  
Fig.4  
1 C ASchuh , A CLund. Atomistic basis for the plastic yield criterion of metallic glass. Nature Materials, 2003, 2(7): 449–452
https://doi.org/10.1038/nmat918
2 Z FZhang , JEckert. Unified tensile fracture criterion. Physical Review Letters, 2005, 94( 9): 094301 10.1103/PhysRevLett.94.094301
3 R TQu , Z F Zhang. A universal fracture criterion for high-strength materials. Scientific Reports, 2013, 3(1): 1117
https://doi.org/10.1038/srep01117
4 KGall , H Sehitoglu, Y IChumlyakov , I VKireeva . Tension-compression asymmetry of the stress-strain response in aged single crystal and polycrystalline NiTi. Acta Materialia, 1999, 47( 4): 1203–1217
https://doi.org/10.1016/S1359-6454(98)00432-7
5 H XXie , TYu, F X Yin . Tension-compression asymmetry in homogeneous dislocation nucleation stress of single crystals Cu, Au, Ni and Ni3Al. Materials Science and Engineering A, 2014, 604: 142–147
https://doi.org/10.1016/j.msea.2014.03.018
6 BRevil-Baudard , NChandola , OCazacu, FBarlat . Correlation between swift effects and tension-compression asymmetry in various polycrystalline materials. Journal of the Mechanics and Physics of Solids, 2014, 70: 104–115
https://doi.org/10.1016/j.jmps.2014.05.012
7 SCheng , J A Spencer, W W Milligan . Strength and tension compression asymmetry in nanostructured and ultrafine-grain metals. Acta Materialia, 2003, 51( 15): 4505–4518
https://doi.org/10.1016/S1359-6454(03)00286-6
8 G JTucker , S MFoiles. Quantifying the influence of twin boundaries on the deformation of nanocrystalline copper using atomistic simulations. International Journal of Plasticity, 2015, 65: 191–205
https://doi.org/10.1016/j.ijplas.2014.09.006
9 A CLund , T GNieh, C ASchuh . Tension-compression strength asymmetry in a simulated nanocrystalline metal. Physical Review B: Condensed Matter and Materials Physics, 2004, 69( 1): 012101
https://doi.org/10.1103/PhysRevB.69.012101
10 EGürses , TEl Sayed. On tension-compression asymmetry in ultrafine-grained and nanocrystalline metals. Computational Materials Science, 2010, 50( 2): 639–644
https://doi.org/10.1016/j.commatsci.2010.09.028
11 Z FZhang , JEckert, LSchultz . Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass. Acta Materialia, 2003, 51(4): 1167–1179
https://doi.org/10.1016/S1359-6454(02)00521-9
12 TMukai , T G Nieh, Y Kawamura , AInoue , KHigashi . Effect of strain rate on compressive behaviour of a Pd40Ni40P20 bulk metallic glass. Intermetallics, 2002, 10(11-12): 1071–1077
https://doi.org/10.1016/S0966-9795(02)00137-1
13 A MHartl , MJerabek, PFreudenthaler, R WLang . Orientation-dependent compression/tension asymmetry of short glass fiber reinforced polypropylene: Deformation, damage and failure. Comp. Part A, 2015, 79: 14–22
https://doi.org/10.1016/j.compositesa.2015.08.021
14 A MHartl , MJerabek, R WLang . Anisotropy and compression/tension asymmetry of PP containing soft and hard particles and short glass fibers. Express Polymer Letters, 2015, 9( 7): 658–670
https://doi.org/10.3144/expresspolymlett.2015.61
15 A MDongare , BLaMattina, A MRajendran . Strengthening behaviour and tension-compression strength-asymmetry in nanocrystalline metal-ceramic composites. Journal of Engineering Materials and Technology, 2012, 134( 4): 041003
https://doi.org/10.1115/1.4006678
16 GKleiser , B Revil-Baudard, OCazacu , C LPasiliao . Experimental characterization and modeling of the anisotropy and tension-compression asymmetry of polycrystalline molybdenum for strain rates ranging from quasi-static to impact. JOM, 2015, 67(11): 2635–2641
https://doi.org/10.1007/s11837-015-1612-4
17 HKim , J Park, YHa , WKim , S SSohn , H SKim , B JLee, N JKim , SLee . Dynamic tension-compression asymmetry of martensitic transformation in austenitic Fe-(0.4, 1.0)C-18Mn steels for cryogenic applications. Acta Materialia, 2015, 96: 37–46
https://doi.org/10.1016/j.actamat.2015.06.021
18 Q WZhang , JZhang, YWang . Effect of strain rate on the tension-compression asymmetric responses of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si. Materials & Design, 2014, 61: 281–285
https://doi.org/10.1016/j.matdes.2014.05.004
19 SKurukuri , M J Worswick, D Ghaffari Tari, R KMishra , J TCarter . Rate sensitivity and tension-compression asymmetry in AZ31B magnesium alloy sheet. Philo. Trans. Royal Soc. A, 2014, 372(2015): 20130216
https://doi.org/10.1098/rsta.2013.0216
20 A MDongare , A MRajendran, BLaMattina , M AZikry , D WBrenner . Tension-compression asymmetry in nanocrystalline Cu: High strain rate vs quasi-static deformation. Computational Materials Science, 2010, 49( 2): 260–265
https://doi.org/10.1016/j.commatsci.2010.05.004
21 IUlacia , N V Dudamell, F Galvez , SYi , M TPerez-Prado , IHurtado . Mechanical behaviour and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates. Acta Materialia, 2010, 58(8): 2988–2998
https://doi.org/10.1016/j.actamat.2010.01.029
22 BRevil-Baudard , OCazacu , PFlater, NChandola , J LAlves . Unusual plastic deformation and damage features in titanium: Experimental tests and constitutive modeling. Journal of the Mechanics and Physics of Solids, 2016, 88: 100–122
https://doi.org/10.1016/j.jmps.2016.01.003
23 J LAlves , OCazacu. Micromechanical study of the dilatational response of porous solids with pressure-insensitive matrix displaying tension-compression asymmetry. Euro. J. Mech. A, 2015, 51: 44–54
https://doi.org/10.1016/j.euromechsol.2014.11.010
24 S HPark , J HLee, B GMoon , B SYou . Tension-compression yield asymmetry in as-cast magnesium alloy. Journal of Alloys and Compounds, 2014, 617: 277–280
https://doi.org/10.1016/j.jallcom.2014.07.164
25 AGravouil , N Moás, TBelytschko . Non-planar 3D crack growth by the extended finite element and level sets. Part II: Level set update. International Journal for Numerical Methods in Engineering, 2002, 53(11): 2569–2586
https://doi.org/10.1002/nme.430
26 NSukumar , D L Chopp, B Moran . Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Engineering Fracture Mechanics, 2003, 70( 1): 29–48
https://doi.org/10.1016/S0013-7944(02)00032-2
27 SGeniaut , E Galenne. A simple method for crack growth in mixed mode with X-FEM. International Journal of Solids and Structures, 2012, 49( 15-16): 2094–2106
https://doi.org/10.1016/j.ijsolstr.2012.04.015
28 YMi , M H Aliabadi. Three-dimensional crack growth simulation using BEM. Computers & Structures, 1994, 52(5): 871–878
https://doi.org/10.1016/0045-7949(94)90072-8
29 A PCisilino , M HAliabadi. Three-dimensional BEM analysis for fatigue crack growth in welded components. International Journal of Pressure Vessels and Piping, 1997, 70( 2): 135–144
https://doi.org/10.1016/S0308-0161(96)00031-2
30 PKrysl , T Belytschko. The element-free Galerkin method for dynamic propagation of arbitrary 3-D cracks. International Journal for Numerical Methods in Engineering, 1999, 44(6): 767–800
https://doi.org/10.1002/(SICI)1097-0207(19990228)44:6<767::AID-NME524>3.0.CO;2-G
31 MDuflot . A meshless method with enriched weight functions for three-dimensional crack propagation. International Journal for Numerical Methods in Engineering, 2006, 65(12): 1970–2006
https://doi.org/10.1002/nme.1530
32 PAreias , T Rabczuk. Finite strain fracture of plates and shells with configurational forces and edge rotations. International Journal for Numerical Methods in Engineering, 2013, 94(12): 1099–1122
https://doi.org/10.1002/nme.4477
33 PAreias , T Rabczuk, J Cde Sá . A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement. Computational Mechanics, 2016, 58( 6): 1–16
https://doi.org/10.1007/s00466-016-1328-5
34 PAreias , M A Msekh, T Rabczuk . Damage and fracture algorithm using the screened Poisson equation and local remeshing. Engineering Fracture Mechanics, 2016, 158: 116–143
https://doi.org/10.1016/j.engfracmech.2015.10.042
35 J HSong , P M AAreias, TBelytschko. A method for dynamic crack and shear band propagation with phantom nodes. International Journal for Numerical Methods in Engineering, 2006, 67( 6): 868–893
https://doi.org/10.1002/nme.1652
36 B NRao , SRahman. An efficient meshless method for fracture analysis of cracks. Computational Mechanics, 2000, 26(4): 398–408
https://doi.org/10.1007/s004660000189
37 TRabczuk , T Belytschko. Cracking particles: a simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61( 13): 2316–2343
https://doi.org/10.1002/nme.1151
38 Z FZhang , GHe, J Eckert , LSchultz . Fracture mechanisms in bulk metallic glassy materials. Physical Review Letters, 2003, 91( 4): 045505
https://doi.org/10.1103/PhysRevLett.91.045505
39 J TFan , F FWu, Z F Zhang , F Jiang , JSun , S XMao . Effect of microstructures on the compressive deformation and fracture behaviours of Zr47Cu46Al7 bulk metallic glass composites. Journal of Non-Crystalline Solids, 2007, 353( 52-54): 4707–4717
https://doi.org/10.1016/j.jnoncrysol.2007.06.062
40 J TFan , Z FZhang, S XMao , B LShen , AInoue . Deformation and fracture behaviours of Co-based metallic glass and its composite with dendrites. Intermetallics, 2009, 17(6): 445–452
https://doi.org/10.1016/j.intermet.2008.12.004
41 YChen , L H Dai. Nature of crack-tip plastic zone in metallic glasses. International Journal of Plasticity, 2016, 77: 54–74
https://doi.org/10.1016/j.ijplas.2015.10.004
42 XTong , G Wang, JYi , J LRen , SPauly , Y LGao , Q JZhai, NMattern , K ADahmen , P KLiaw , JEckert . Shear avalanches in plastic deformation of a metallic glass composite. International Journal of Plasticity, 2016, 77: 141–155
https://doi.org/10.1016/j.ijplas.2015.10.006
43 E MBringa , ACaro, Y M Wang , M Victoria , J MMcNaney , B ARemington , R FSmith, B RTorralva , HVan Swygenhoven . Ultrahigh strength in nanocrystalline materials under shock loading. Science, 2005, 309( 5742): 1838–1841
https://doi.org/10.1126/science.1116723
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed