Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2019, Vol. 13 Issue (2): 495-503   https://doi.org/10.1007/s11709-018-0492-4
  本期目录
Molecular dynamics investigation of mechanical properties of single-layer phagraphene
Ali Hossein Nezhad SHIRAZI()
Institute of Structural Mechanics, Bauhaus-Universität Weimar, Weimar, Germany
 全文: PDF(2516 KB)   HTML
Abstract

Phagraphene is a very attractive two-dimensional (2D) full carbon allotrope with very interesting mechanical, electronic, optical, and thermal properties. The objective of this study is to investigate the mechanical properties of this new graphene like 2D material. In this work, mechanical properties of phagraphene have been studied not only in the defect-free form, but also with the critical defect of line cracks, using the classical molecular dynamics simulations. Our study shows that the pristine phagraphene in zigzag direction experience a ductile behavior under uniaxial tensile loading and the nanosheet in this direction are less sensitive to temperature changes as compared to the armchair direction. We studied different crack lengths to explore the influence of defects on the mechanical properties of phagraphene. We also investigated the temperature effect on the mechanical properties of pristine and defective phagraphene. Our classical atomistic simulation results confirm that larger cracks can reduce the strength of the phagraphene. Moreover, it was shown the temperature has a considerable weakening effect on the tensile strength of phagraphene. The results of this study may be useful for the design of nano-devices using the phagraphene.

Key wordsphaqraphene    mechanical properties    crack propaqation    molecular dynamics    thermal effects
收稿日期: 2017-11-27      出版日期: 2019-03-12
Corresponding Author(s): Ali Hossein Nezhad SHIRAZI   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 495-503.
Ali Hossein Nezhad SHIRAZI. Molecular dynamics investigation of mechanical properties of single-layer phagraphene. Front. Struct. Civ. Eng., 2019, 13(2): 495-503.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-018-0492-4
https://academic.hep.com.cn/fsce/CN/Y2019/V13/I2/495
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 K SNovoselov, A KGeim, S VMorozov, DJiang, YZhang, S VDubonos, I VGrigorieva, A AFirsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
https://doi.org/10.1126/science.1102896
2 A KGeim, K S Novoselov. The rise of graphene. Nature Materials, 2007, 6(3): 183–191
https://doi.org/10.1038/nmat1849
3 SStankovich, D A Dikin, R D Piner, K A Kohlhaas, A Kleinhammes, YJia, YWu, S B T Nguyen, R S Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7): 1558–1565
https://doi.org/10.1016/j.carbon.2007.02.034
4 SStankovich, R D Piner, X Chen, NWu, S TNguyen, R SRuoff. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). Journal of Materials Chemistry, 2006, 16(2): 155–158
https://doi.org/10.1039/B512799H
5 XWang, L Zhi, KMüllen. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 2008, 8(1): 323–327
https://doi.org/10.1021/nl072838r
6 SGhosh, I Calizo, DTeweldebrhan, E PPokatilov, D LNika, A ABalandin, WBao, F Miao, C NLau. Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 2008, 92(15): 151911
https://doi.org/10.1063/1.2907977
7 A KGeim. Graphene: status and prospects. Science, 2009, 324(5934): 1530–1534
8 K SNovoselov. Graphene: Materials in the Flatland. Nobel Lecture, 2010, 106–131
https://doi.org/10.1002/anie.201101502
9 A KGeim. Nobel Lecture: random walk to graphene. Reviews of Modern Physics, 2011, 83(3): 851–862
https://doi.org/10.1103/RevModPhys.83.851
10 BMortazavi, L F C Pereira, J W Jiang, T Rabczuk. Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Scientific Reports, 2015, 5(1): 13228
https://doi.org/10.1038/srep13228
11 SEigler. Graphene. An Introduction to the Fundamentals and Industrial Applications. Edited by Madhuri Sharon and Maheshwar Sharon. Angewandte Chemie International Editon. Wiley-Blackwell, 2016, doi: 10.1002/anie.201602067
12 TSainsbury, S Gnaniah, S JSpencer, SMignuzzi, N ABelsey, K RPaton, ASatti. Extreme mechanical reinforcement in graphene oxide based thin-film nanocomposites via covalently tailored nanofiller matrix compatibilization. Carbon, 2017, 114: 367–376
https://doi.org/10.1016/j.carbon.2016.11.061
13 YKim, J Lee, M SYeom, J WShin, HKim, Y Cui, J WKysar, JHone, Y Jung, SJeon, S MHan. Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nature Communications, 2013, 4, doi: 10.1038/ncomms3114
14 BMortazavi, F Hassouna, ALaachachi, ARajabpour, SAhzi, D Chapron, VToniazzo, DRuch. Experimental and multiscale modeling of thermal conductivity and elastic properties of PLA/expanded graphite polymer nanocomposites. Thermochimica Acta, 2013, 552: 106–113
https://doi.org/10.1016/j.tca.2012.11.017
15 BMortazavi, T Rabczuk. Multiscale modeling of heat conduction in graphene laminates. Carbon, 2015, 85: 1–7
https://doi.org/10.1016/j.carbon.2014.12.046
16 HMalekpour, K H Chang, J C Chen, C Y Lu, D L Nika, K S Novoselov, A A Balandin. Thermal conductivity of graphene laminate. Nano Letters, 2014, 14(9): 5155–5161
https://doi.org/10.1021/nl501996v
17 BMortazavi, H Yang, FMohebbi, GCuniberti, TRabczuk. Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: a multiscale investigation. Applied Energy, 2017, 202: 323–334
https://doi.org/10.1016/j.apenergy.2017.05.175
18 M AMsekh, M Silani, MJamshidian, PAreias, XZhuang, GZi, P He, TRabczuk. Predictions of J integral and tensile strength of clay/epoxy nanocomposites material using phase field model. Composites. Part B, Engineering, 2016, 93: 97–114
https://doi.org/10.1016/j.compositesb.2016.02.022
19 AAlmasi, M Silani, HTalebi, TRabczuk. Stochastic analysis of the interphase effects on the mechanical properties of clay/epoxy nanocomposites. Composite Structures, 2015, 133: 1302–1312
https://doi.org/10.1016/j.compstruct.2015.07.061
20 NVu-Bac, M Silani, TLahmer, XZhuang, TRabczuk. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535
https://doi.org/10.1016/j.commatsci.2014.04.066
21 MSilani, H Talebi, SZiaei-Rad, PKerfriden, S P ABordas, TRabczuk. Stochastic modelling of clay/epoxy nanocomposites. Composite Structures, 2014, 118: 241–249
https://doi.org/10.1016/j.compstruct.2014.07.009
22 K MHamdia, M A Msekh, M Silani, NVu-Bac, XZhuang, TNguyen-Thoi, TRabczuk. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190
https://doi.org/10.1016/j.compstruct.2015.08.051
23 BMortazavi, A Dianat, GCuniberti, TRabczuk, . Application of silicene, germanene and stanene for Na or Li ion storage: a theoretical investigation. Electrochimica Acta, 2016, 213: 865–870
https://doi.org/10.1016/j.electacta.2016.08.027
24 A H NShirazi R, Abadi, M, Izadifar N, Alajlan T., Rabczuk Mechanical responses of pristine and defective C3N nanosheets studied by molecular dynamics simulations. Computational Materials Science, 2018, 147, 316–321
https://doi.org/10.1016/j.commatsci.2018.01.058
25 JMahmood, E K Lee, M Jung, DShin, H JChoi, J MSeo, S MJung, DKim, F Li, M SLah, NPark, H J Shin, J H Oh, J B Baek. Two-dimensional polyaniline (C3N) from carbonized organic single crystals in solid state. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(27): 7414–7419
https://doi.org/10.1073/pnas.1605318113
26 BMortazavi. Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon, 2017, 118: 25–34
https://doi.org/10.1016/j.carbon.2017.03.029
27 BMortazavi, O Rahaman, TRabczuk, L F CPereira. Thermal conductivity and mechanical properties of nitrogenated holey graphene. Carbon, 2016, 106: 1–8
https://doi.org/10.1016/j.carbon.2016.05.009
28 BMortazavi, Y Rémond, SAhzi, VToniazzo. Thickness and chirality effects on tensile behavior of few-layer graphene by molecular dynamics simulations. Computational Materials Science, 2012, 53(1): 298–302
https://doi.org/10.1016/j.commatsci.2011.08.018
29 BMortazavi, O Rahaman, ADianat, TRabczuk. Mechanical responses of borophene sheets: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18(39): 27405–27413
https://doi.org/10.1039/C6CP03828J
30 BMortazavi, A Dianat, ORahaman, GCuniberti, TRabczuk. Borophene as an anode material for Ca, Mg, Na or Li ion storage: a first-principle study. Journal of Power Sources, 2016, 329: 456–461
https://doi.org/10.1016/j.jpowsour.2016.08.109
31 YLiu, X Peng. Recent advances of supercapacitors based on two-dimensional materials. Applied Material Today, 2017, 8: 104–115
https://doi.org/10.1016/j.apmt.2017.05.002
32 BMortazavi, M Shahrokhi, TRabczuk, L F CPereira. Electronic, optical and thermal properties of highly stretchable 2D carbon Ene-yne graphyne. Carbon, 2017, 123: 344–353
https://doi.org/10.1016/j.carbon.2017.07.066
33 W RLiu. Graphene-based energy devices. In: Rashid bin Mohd Yusoff, ed. Graphene-Based Energy Devices. Wiley-VCH, 2015, 85–122
https://doi.org/10.1002/9783527690312.ch3
34 FXia, D B Farmer, Y M Lin, P Avouris. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Letters, 2010, 10(2): 715–718
https://doi.org/10.1021/nl9039636
35 L SPanchakarla, K SSubrahmanyam, S KSaha, AGovindaraj, H RKrishnamurthy, U VWaghmare, C N RRao. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Advanced Materials, 2009, 21: 4726–4730
https://doi.org/10.1002/adma.200901285
36 ALherbier, X Blase, Y MNiquet, FTriozon, SRoche. Charge transport in chemically doped 2D graphene. Physical Review Letters, 2008, 101(3): 036808
https://doi.org/10.1103/PhysRevLett.101.036808
37 ZLiu, L Ma, GShi, WZhou, Y Gong, SLei, XYang, J Zhang, JYu, K PHackenberg, ABabakhani, J CIdrobo, RVajtai, JLou, P M Ajayan. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nature Nanotechnology, 2013, 8(2): 119–124
https://doi.org/10.1038/nnano.2012.256
38 DVan Tuan, J Kotakoski, TLouvet, FOrtmann, J CMeyer, SRoche. Scaling properties of charge transport in polycrystalline graphene. Nano Letters, 2013, 13(4): 1730–1735
https://doi.org/10.1021/nl400321r
39 BMortazavi, O Rahaman, MMakaremi, ADianat, G Cuniberti, TRabczuk. First-principles investigation of mechanical properties of silicene, germanene and stanene. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87: 228–232.
https://doi.org/10.1016/j.physe.2016.10
40 ACresti, N Nemec, BBiel, GNiebler, FTriozon, GCuniberti, SRoche. Charge transport in disordered graphene-based low dimensional materials. Nano Research, 2008, 1(5): 361–394
https://doi.org/10.1007/s12274-008-8043-2
41 BMortazavi, A Lherbier, ZFan, AHarju, TRabczuk, J CCharlier. Thermal and electronic transport characteristics of highly stretchable graphene kirigami. Nanoscale, 2017, 9(42): 16329–16341
https://doi.org/10.1039/C7NR05231F
42 ZWang, X F Zhou, X Zhang, QZhu, HDong, M Zhao, A ROganov. Phagraphene: a low-energy graphene allotrope composed of 5-6-7 carbon rings with distorted dirac cones. Nano Letters, 2015, 15(9): 6182–6186
https://doi.org/10.1021/acs.nanolett.5b02512
43 YLiu, Z Chen, SHu, GYu, Y Peng. The influence of silicon atom doping phagraphene nanoribbons on the electronic and magnetic properties. Materials Science and Engineering B, 2017, 220: 30–36
https://doi.org/10.1016/j.mseb.2017.03.002
44 A YLuo, R Hu, Z QFan, H LZhang, J HYuan, C HYang, Z HZhang. Electronic structure, carrier mobility and device properties for mixed-edge phagraphene nanoribbon by hetero-atom doping. Organic Electronics, 2017, 51: 277–286
https://doi.org/10.1016/j.orgel.2017.09.025
45 P FYuan, Z Q Fan, Z H Zhang. Magneto-electronic properties and carrier mobility in phagraphene nanoribbons: a theoretical prediction. Carbon, 2017, 124: 228–237
https://doi.org/10.1016/j.carbon.2017.08.068
46 L F CPereira, BMortazavi, MMakaremi, TRabczuk. Anisotropic thermal conductivity and mechanical properties of phagraphene: a molecular dynamics study. RSC Advances, 2016, 6(63): 57773–57779
https://doi.org/10.1039/C6RA05082D
47 RAbadi, R P Uma, M Izadifar, TRabczuk. The effect of temperature and topological defects on fracture strength of grain boundaries in single-layer polycrystalline boron-nitride nanosheet. Computational Materials Science, 2016, 123: 277–286
https://doi.org/10.1016/j.commatsci.2016.06.028
48 BMortazavi, G Cuniberti. Mechanical properties of polycrystalline boron-nitride nanosheets. RSC Advances, 2014, 4(37): 19137–19143
https://doi.org/10.1039/C4RA01103A
49 RAbadi, R P Uma, M Izadifar, TRabczuk. Investigation of crack propagation and existing notch on the mechanical response of polycrystalline hexagonal boron-nitride nanosheets. Computational Materials Science, 2017, 131: 86–99
https://doi.org/10.1016/j.commatsci.2016.12.046
50 HTalebi, M Silani, S PBordas, PKerfriden, TRabczuk. Molecular dynamics/XFEM coupling by a three-dimensional extended bridging domain with applications to dynamic brittle fracture. International Journal for Multiscale Computational Engineering, 2013, 11(6): 527–541
https://doi.org/10.1615/IntJMultCompEng.2013005838
51 HTalebi, M Silani, TRabczuk. Concurrent multiscale modeling of three dimensional crack and dislocation propagation. Advances in Engineering Software, 2015, 80: 82–92
https://doi.org/10.1016/j.advengsoft.2014.09.016
52 MSilani, H Talebi, A MHamouda, TRabczuk. Nonlocal damage modelling in clay/epoxy nanocomposites using a multiscale approach. Journal of Computational Science, 2016, 15: 18–23
https://doi.org/10.1016/j.jocs.2015.11.007
53 HTalebi, M Silani, S P ABordas, PKerfriden, TRabczuk. A computational library for multiscale modeling of material failure. Computational Mechanics, 2014, 53(5): 1047–1071
https://doi.org/10.1007/s00466-013-0948-2
54 P RBudarapu, R Gracie, S P ABordas, TRabczuk. An adaptive multiscale method for quasi-static crack growth. Computational Mechanics, 2014, 53(6): 1129–1148
https://doi.org/10.1007/s00466-013-0952-6
55 BMortazavi, G Cuniberti, TRabczuk. Mechanical properties and thermal conductivity of graphitic carbon nitride: a molecular dynamics study. Computational Materials Science, 2015, 99: 285–289
https://doi.org/10.1016/j.tafmec.2013.12.004
56 K MHamdia, M Silani, XZhuang, PHe, T Rabczuk. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227
https://doi.org/10.1007/s10704-017-0210-6
57 SPlimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–19
https://doi.org/10.1006/jcph.1995.1039
58 AStukowski. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012
https://doi.org/10.1088/0965-0393/18/1/015012
59 D HTsai. The virial theorem and stress calculation in molecular dynamics. Journal of Chemical Physics, 1979, 70(3): 1375–1382
https://doi.org/10.1063/1.437577
60 CLee, X Wei, J WKysar, JHone. Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science, 2008, 321(5887): 385–388
https://doi.org/10.1126/science.1157996
61 G RIrwin. Fracture. In: Flügge S, ed. Elast. Plast. / Elastizität Und Plast. Springer Berlin Heidelberg, 1958, 551–590
https://doi.org/10.1007/978-3-642-45887-3_5
62 DGross, T Seelig. Fracture Mechanics: With An Introduction to Micromechanics (2nd ed). Heidelberg: Springer, 2011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed