Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2019, Vol. 13 Issue (2): 456-477   https://doi.org/10.1007/s11709-019-0519-5
  本期目录
The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired solutions
Gui-Rong Liu()
Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati 45219, USA
 全文: PDF(2888 KB)   HTML
Abstract

The smoothed finite element method (S-FEM) was originated by G R Liu by combining some meshfree techniques with the well-established standard finite element method (FEM). It has a family of models carefully designed with innovative types of smoothing domains. These models are found having a number of important and theoretically profound properties. This article first provides a concise and easy-to-follow presentation of key formulations used in the S-FEM. A number of important properties and unique features of S-FEM models are discussed in detail, including 1) theoretically proven softening effects; 2) upper-bound solutions; 3) accurate solutions and higher convergence rates; 4) insensitivity to mesh distortion; 5) Jacobian-free; 6) volumetric-locking-free; and most importantly 7) working well with triangular and tetrahedral meshes that can be automatically generated. The S-FEM is thus ideal for automation in computations and adaptive analyses, and hence has profound impact on AI-assisted modeling and simulation. Most importantly, one can now purposely design an S-FEM model to obtain solutions with special properties as wish, meaning that S-FEM offers a framework for design numerical models with desired properties. This novel concept of numerical model on-demand may drastically change the landscape of modeling and simulation. Future directions of research are also provided.

Key wordscomputational method    finite element method    smoothed finite element method    strain smoothing technique    smoothing domain    weakened weak form    solid mechanics    softening effect    upper bound solution
收稿日期: 2018-10-15      出版日期: 2019-03-12
Corresponding Author(s): Gui-Rong Liu   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2019, 13(2): 456-477.
Gui-Rong Liu. The smoothed finite element method (S-FEM): A framework for the design of numerical models for desired solutions. Front. Struct. Civ. Eng., 2019, 13(2): 456-477.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-019-0519-5
https://academic.hep.com.cn/fsce/CN/Y2019/V13/I2/456
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Type* method for creation and number of SD’s (N s) S-FEM models dimension of problem; properties
Cell-based SD (CSD) SD’s or smoothing cells (SC’s) are divided from and located within the elements (Ns= i=1Nensci, ns ci=1,2,3, 4,...) CS-FEM
nCS-FEM
1D, 2D, 3D
softer; high accuracy; insensitive to mesh distortion
Edge-based SD (ESD) SD’s are created based on edges by connecting portions of the surrounding elements sharing the associated edge (Ns=N edge) ES-FEM 2D, 3D
softer; very high accuracy, less insensitive to mesh distortion
Node-based SD (NSD) SD’s are created based on nodes by connecting portions of the surrounding elements sharing the associated node (Ns=N node) NS-FEM 1D, 2D, 3D
soft; upper bound, very insensitive to mesh distortion, volumetric locking free
Face-based SD (FSD) SD’s are created based on faces by connecting portions of the surrounding elements sharing the associated face (Ns=N face) FS-FEM 3D
softer; very high accuracy, less insensitive to mesh distortion
Tab.1  
Fig.7  
Fig.8  
dimension of the problem minimum number of smoothing domains
1D Nsmin? = nt
2D Nsmin? = 2nt /3
3D Nsmin? = 3nt /6= nt /2
Tab.2  
Fig.9  
point N1 N2 N3 N4 description
1 1.0 0 0 0 field node
2 0 1.0 0 0 field node
3 0 0 1.0 0 field node
4 0 0 0 1.0 field node
5 1/2 1/2 0 0 side midpoint
6 0 1/2 1/2 0 side midpoint
7 0 0 1/2 1/2 side midpoint
8 1/2 0 0 1/2 side midpoint
9 1/4 1/4 1/4 1/4 intersection of two bi-medians
g1 3/4 1/4 0 0 Gauss point (mid-segment point of Γk,ps)
g2 3/8 3/8 1/8 1/8 Gauss point (mid-segment point of Γk,ps)
g3 3/8 1/8 1/8 3/8 Gauss point (mid-segment point of Γk,ps)
g4 3/4 0 0 1/4 Gauss point (mid-segment point of Γk,ps)
g5 1/4 3/4 0 0 Gauss point (mid-segment point of Γk,ps)
g6 0 3/4 1/4 0 Gauss point (mid-segment point of Γk,ps)
g7 1/8 3/8 3/8 1/8 Gauss point (mid-segment point of Γk,ps)
g8 0 1/4 3/4 0 Gauss point (mid-segment point of Γk,ps)
g9 0 0 3/4 1/4 Gauss point (mid-segment point of Γk,ps)
g10 1/8 1/8 3/8 3/8 Gauss point (mid-segment point of Γk,ps)
g11 0 0 1/4 3/4 Gauss point (mid-segment point of Γk,ps)
g12 1/4 0 0 3/4 Gauss point (mid-segment point of Γk,ps)
Tab.3  
point N1’ N2’ N3’ N4’ N5’ N6’ description
1’ 1.0 0 0 0 0 0 field node
2’ 0 1.0 0 0 0 0 field node
3’ 0 0 1.0 0 0 0 field node
4’ 0 0 0 1.0 0 0 field node
5’ 0 0 0 0 1.0 0 field node
6’ 0 0 0 0 0 1.0 field node
O 1/6 1/6 1/6 1/6 1/6 1/6 centroid point
g1 7/12 1/12 1/12 1/12 1/12 1/12 Gauss point (mid-segment point of Γk,ps)
g2 1/2 1/2 0 0 0 0 Gauss point (mid-segment point of Γk,ps)
g3 1/12 7/12 1/12 1/12 1/12 1/12 Gauss point (mid-segment point of Γk,ps)
g4 0 1/2 1/2 0 0 0 Gauss point (mid-segment point of Γk,ps)
g5 1/12 1/12 7/12 1/12 1/12 1/12 Gauss point (mid-segment point of Γk,ps)
g6 0 0 1/2 1/2 0 0 Gauss point (mid-segment point of Γk,ps)
g7 1/12 1/12 1/12 7/12 1/12 1/12 Gauss point (mid-segment point of Γk,ps)
g8 0 0 0 1/2 1/2 0 Gauss point (mid-segment point of Γk,ps)
g9 1/12 1/12 1/12 1/12 7/12 1/12 Gauss point (mid-segment point of Γk,ps)
g10 0 0 0 0 1/2 1/2 Gauss point (mid-segment point of Γk,ps)
g11 1/12 1/12 1/12 1/12 1/12 7/12 Gauss point (mid-segment point of Γk,ps)
g12 1/2 0 0 0 0 1/2 Gauss point (mid-segment point of Γk,ps)
Tab.4  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
1 T J RHughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Englewood Cliffs: Prentice-Hall, 1987
2 TBelytschko, W K Liu, B Moran, K IElkhodary. Nonlinear Finite Elements for Continua and Structures, 2nd ed. West Sussex: Wiley, 2014
3 K JBathe. Finite Element Procedures. Englewood Cliffs: Prentice-Hall, 1996
4 G RLiu, S S Quek. The Finite Element Method: A Practical Course, 2nd ed. Oxford: Butterworth-Heinemann, 2013
5 G RLiu. Meshfree Methods: Moving Beyond the Finite Element Method, 2nd ed. Boca Raton: CRC Press, 2009
6 G RLiu, G Y Zhang. The Smoothed Point Interpolation Methods – G Space Theory and Weakened Weak Forms. New Jersey: World Scientific Publishing, 2013
7 G RLiu. An overview on meshfree methods: for computational solid mechanics. International Journal of Computational Methods, 2016, 13(05): 1630001
https://doi.org/10.1142/S0219876216300014
8 G RLiu, T Nguyen-Thoi. Smoothed Finite Element Methods. Boca Raton: CRC Press, 2010
9 G RLiu, G Y Zhang, K Y Dai, Y Y Wang, Z H Zhong, G Y Li, X Han. A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems. International Journal of Computational Methods, 2005, 2(4): 645–665
https://doi.org/10.1142/S0219876205000661
10 G YZhang, G R Liu, Y Y Wang, H T Huang, Z H Zhong, G Y Li, X Han. A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. International Journal for Numerical Methods in Engineering, 2007, 72(13): 1524–1543
https://doi.org/10.1002/nme.2050
11 G RLiu, G Y Zhang. Upper bound solution to elasticity problems: a unique property of the linearly conforming point interpolation method (LC-PIM). International Journal for Numerical Methods in Engineering, 2008, 74(7): 1128–1161
https://doi.org/10.1002/nme.2204
12 G RLiu, K Y Dai, T Nguyen-Thoi. A smoothed finite element method for mechanics problems. Computational Mechanics, 2007, 39(6): 859–877
https://doi.org/10.1007/s00466-006-0075-4
13 G RLiu, T T Nguyen, K Y Dai, K Y Lam. Theoretical aspects of the smoothed finite element method (SFEM). International Journal for Numerical Methods in Engineering, 2007, 71(8): 902–930
https://doi.org/10.1002/nme.1968
14 K YDai, G R Liu. Free and forced vibration analysis using the smoothed finite element method (SFEM). Journal of Sound and Vibration, 2007, 301(3–5): 803–820
https://doi.org/10.1016/j.jsv.2006.10.035
15 K YDai, G R Liu, T Nguyen-Thoi. An n-sided polygonal smoothed finite element method (nSFEM) for solid mechanics. Finite Elements in Analysis and Design, 2007, 43(11–12): 847–860
https://doi.org/10.1016/j.finel.2007.05.009
16 TNguyen-Thoi, G R Liu, K Y Dai, K Y Lam. Selective smoothed finite element method. Tsinghua Science and Technology, 2007, 12(5): 497–508
https://doi.org/10.1016/S1007-0214(07)70125-6
17 G RLiu. A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. International Journal of Computational Methods, 2008, 5(2): 199–236
https://doi.org/10.1142/S0219876208001510
18 G RLiu, T Nguyen-Thoi, K YLam. A novel alpha finite element method (αFEM) for exact solution to mechanics problems using triangular and tetrahedral elements. Computer Methods in Applied Mechanics and Engineering, 2008, 197(45–48): 3883–3897
https://doi.org/10.1016/j.cma.2008.03.011
19 X YCui, G R Liu, G Y Li, X Zhao, T TNguyen, G YSun. A smoothed finite element method (SFEM) for linear and geometrically nonlinear analysis of plates and shells. CMES: Comput Model Eng Sci, 2008, 28: 109–125
20 G RLiu, T Nguyen-Thoi, HNguyen-Xuan, K YLam. A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Computers & Structures, 2009, 87(1–2): 14–26
https://doi.org/10.1016/j.compstruc.2008.09.003
21 G RLiu, T Nguyen-Thoi, K YLam. An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. Journal of Sound and Vibration, 2009, 320(4–5): 1100–1130
https://doi.org/10.1016/j.jsv.2008.08.027
22 Z CHe, G R Liu, Z H Zhong, S C Wu, G Y Zhang, A G Cheng. An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems. Computer Methods in Applied Mechanics and Engineering, 2009, 199(1–4): 20–33
https://doi.org/10.1016/j.cma.2009.09.014
23 X YCui, G R Liu, G Y Li, G Y Zhang, G Y Sun. Analysis of elastic-plastic problems using edge-based smoothed finite element method. International Journal of Pressure Vessels and Piping, 2009, 86(10): 711–718
https://doi.org/10.1016/j.ijpvp.2008.12.004
24 TNguyen-Thoi, G R Liu, H C Vu–Do, H Nguyen-Xuan. An edge-based smoothed finite element method for visco-elastoplastic analyses of 2D solids using triangular mesh. Computational Mechanics, 2009, 45(1): 23–44
https://doi.org/10.1007/s00466-009-0415-2
25 G RLiu, H Nguyen-Xuan, TNguyen-Thoi, XXu. A novel Galerkin-like weakform and a superconvergent alpha finite element method (SαFEM) for mechanics problems using triangular meshes. Journal of Computational Physics, 2009, 228(11): 4055–4087
https://doi.org/10.1016/j.jcp.2009.02.017
26 G RLiu, T Nguyen-Thoi, K YLam. A novel FEM by scaling the gradient of strains with factor alpha (αFEM). Computational Mechanics, 2009, 43(3): 369–391
https://doi.org/10.1007/s00466-008-0311-1
27 TNguyen-Thoi, G R Liu, K Y Lam, G Y Zhang. A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. International Journal for Numerical Methods in Engineering, 2009, 78(3): 324–353
https://doi.org/10.1002/nme.2491
28 TNguyen-Thoi, G R Liu, H C Vu-Do, H Nguyen-Xuan. A face-based smoothed finite element method (FS-FEM) for visco-elastoplastic analyses of 3D solids using tetrahedral mesh. Computer Methods in Applied Mechanics and Engineering, 2009, 198(41–44): 3479–3498
https://doi.org/10.1016/j.cma.2009.07.001
29 Z CHe, G R Liu, Z H Zhong, X Y Cui, G Y Zhang, A G Cheng. A coupled edge-/face-based smoothed finite element method for structural acoustic problems. Applied Acoustics, 2010, 71(10): 955–964
https://doi.org/10.1016/j.apacoust.2010.06.007
30 Z QZhang, J Yao, G RLiu. An immersed smoothed finite element method for fluid-structure interaction problems. International Journal of Computational Methods, 2011, 8(4): 747–757
https://doi.org/10.1142/S0219876211002794
31 NVu-Bac, H Nguyen-Xuan, LChen, SBordas, PKerfriden, R NSimpson, G RLiu, TRabczuk. A node-based smoothed XFEM for fracture mechanics. CMES: Comput Model Eng Sci, 2011, 73: 331–356
32 LChen, T Rabczuk, S P ABordas, G RLiu, K YZeng, PKerfriden. Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Computer Methods in Applied Mechanics and Engineering, 2012, 209–212: 250–265
https://doi.org/10.1016/j.cma.2011.08.013
33 HNguyen-Xuan, G R Liu. An edge-based smoothed finite element method softened with a bubble function (bES-FEM) for solid mechanics problems. Computers & Structures, 2013, 128: 14–30
https://doi.org/10.1016/j.compstruc.2013.05.009
34 WZeng, G R Liu, Y Kitamura, HNguyen-Xuan. A three-dimensional ES-FEM for fracture mechanics problems in elastic solids. Engineering Fracture Mechanics, 2013, 114: 127–150
https://doi.org/10.1016/j.engfracmech.2013.10.017
35 CJiang, Z Q Zhang, G R Liu, X Han, WZeng. An edge-based/node-based selective smoothed finite element method using tetrahedrons for cardiovascular tissues. Engineering Analysis with Boundary Elements, 2015, 59: 62–77
https://doi.org/10.1016/j.enganabound.2015.04.019
36 WZeng, G R Liu, D Li, X WDong. A smoothing technique based beta finite element method (βFEM) for crystal plasticity modeling. Computers & Structures, 2016, 162: 48–67
https://doi.org/10.1016/j.compstruc.2015.09.007
37 J SChen, C T Wu, S Yoon, YYou. A stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 2001, 50(2): 435–466
https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
38 G RLiu. On G space theory. International Journal of Computational Methods, 2009, 6(2): 257–289
https://doi.org/10.1142/S0219876209001863
39 G RLiu, T Nguyen-Thoi, HNguyen-Xuan, K YDai, K YLam. On the essence and the evaluation of the shape functions for the smoothed finite element method (SFEM) (Letter to Editor). International Journal for Numerical Methods, 2009, 77: 1863–1869
40 G RLiu, G Y Zhang. A normed G space and weakened weak (W2) formulation of a cell-based smoothed point interpolation method. International Journal of Computational Methods, 2009, 6(1): 147–179
https://doi.org/10.1142/S0219876209001796
41 TNguyen-Thoi, G R Liu, H Nguyen-Xuan. Additional properties of the node-based smoothed finite element method (NS-FEM) for solid mechanics problems. International Journal of Computational Methods, 2009, 6(4): 633–666
https://doi.org/10.1142/S0219876209001954
42 TNguyen-Thoi. Development of Smoothed Finite Element Method (SFEM). Dissertation for the Doctoral Degree. Singapore: National University of Singapore, 2009
43 G RLiu, H Nguyen-Xuan, TNguyen-Thoi. A theoretical study on the smoothed FEM (S-FEM) models: properties, accuracy and convergence rates. International Journal for Numerical Methods in Engineering, 2010, 84(10): 1222–1256
https://doi.org/10.1002/nme.2941
44 G RLiu. A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part I theory. International Journal for Numerical Methods in Engineering, 2010, 81: 1093–1126
45 G RLiu. A G space theory and a weakened weak (W2) form for a unified formulation of compatible and incompatible methods: Part II applications to solid mechanics problems. International Journal for Numerical Methods in Engineering, 2010, 81: 1127–1156
46 HNguyen-Xuan, H V Nguyen, S Bordas, TRabczuk, MDuflot. A cell-based smoothed finite element method for three dimensional solid structures. KSCE Journal of Civil Engineering, 2012, 16(7): 1230–1242
https://doi.org/10.1007/s12205-012-1515-7
47 Z CHe, G Y Li, Z H Zhong, A G Cheng, G Y Zhang, G R Liu, E Li, ZZhou. An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Computational Mechanics, 2013, 52(1): 221–236
https://doi.org/10.1007/s00466-012-0809-4
48 NNguyen-Thanh, T Rabczuk, HNguyen-Xuan, S P ABordas. An alternative alpha finite element method (AαFEM) for free and forced structural vibration using triangular meshes. Journal of Computational and Applied Mathematics, 2010, 233(9): 2112–2135
https://doi.org/10.1016/j.cam.2009.08.117
49 G RLiu, H Nguyen-Xuan, TNguyen-Thoi. A variationally consistent αFEM (VCαFEM) for solution bounds and nearly exact solution to solid mechanics problems using quadrilateral elements. International Journal for Numerical Methods in Engineering, 2011, 85(4): 461–497
https://doi.org/10.1002/nme.2977
50 X YCui, G Y Li, GZheng, S ZWu. NS-FEM/ES-FEM for contact problems in metal forming analysis. International Journal of Material Forming, 2010, 3(S1): 887–890
https://doi.org/10.1007/s12289-010-0910-1
51 YLi, G R Liu, G Y Zhang. An adaptive NS/ES-FEM approach for 2D contact problems using triangular elements. Finite Elements in Analysis and Design, 2011, 47(3): 256–275
https://doi.org/10.1016/j.finel.2010.10.007
52 XXu, Y T Gu, G R Liu. A hybrid smoothed finite element method (H-SFEM) to solid mechanics problems. International Journal of Computational Methods, 2013, 10(01): 1340011
https://doi.org/10.1142/S0219876213400112
53 XZhao, S P A Bordas, J Qu. A hybrid smoothed extended finite element/level set method for modeling equilibrium shapes of nano-inhomogeneities. Computational Mechanics, 2013, 52(6): 1417–1428
https://doi.org/10.1007/s00466-013-0884-1
54 FWu, G R Liu, G Y Li, Z C He. A new hybrid smoothed FEM for static and free vibration analyses of Reissner-Mindlin Plates. Computational Mechanics, 2014, 54(3): 865–890
https://doi.org/10.1007/s00466-014-1039-8
55 X YCui, S Chang, G YLi. A two-step Taylor Galerkin smoothed finite element method for Lagrangian dynamic problem. International Journal of Computational Methods, 2015, 12(04): 1540004
https://doi.org/10.1142/S0219876215400046
56 ELi, Z C He, X Xu, G RLiu, Y TGu. A three-dimensional hybrid smoothed finite element method (H-SFEM) for nonlinear solid mechanics problems. Acta Mechanica, 2015, 226(12): 4223–4245
https://doi.org/10.1007/s00707-015-1456-6
57 KLee, Y Son, SIm. Three-dimensional variable-node elements based upon CS-FEM for elastic-plastic analysis. Computers & Structures, 2015, 158: 308–332
https://doi.org/10.1016/j.compstruc.2015.06.005
58 YLi, G Y Zhang, G R Liu, Y N Huang, Z Zong. A contact analysis approach based on linear complementarity formulation using smoothed finite element methods. Engineering Analysis with Boundary Elements, 2013, 37(10): 1244–1258
https://doi.org/10.1016/j.enganabound.2013.06.003
59 X YCui, G Y Li. Metal forming analysis using the edge-based smoothed finite element method. Finite Elements in Analysis and Design, 2013, 63: 33–41
https://doi.org/10.1016/j.finel.2012.09.003
60 WZeng, J M Larsen, G R Liu. Smoothing technique based crystal plasticity finite element modeling of crystalline materials. International Journal of Plasticity, 2015, 65: 250–268
https://doi.org/10.1016/j.ijplas.2014.09.007
61 X YCui, G R Liu, G Y Li, G Y Zhang, G Zheng. Analysis of plates and shells using an edge-based smoothed finite element method. Computational Mechanics, 2010, 45(2–3): 141–156
https://doi.org/10.1007/s00466-009-0429-9
62 HNguyen-Xuan, G R Liu, C Thai-Hoang, TNguyen-Thoi. An edge-based smoothed finite element method (ES-FEM) with stabilized discrete shear gap technique for analysis of Reissner-Mindlin plates. Computer Methods in Applied Mechanics and Engineering, 2010, 199(9–12): 471–489
https://doi.org/10.1016/j.cma.2009.09.001
63 Z QZhang, G R. Liu An edge-based smoothed finite element method (ES-FEM) using 3-node triangular elements for 3D non-linear analysis of spatial membrane structures. International Journal for Numerical Methods, 2011, 86(2): 135–154
64 P MBaiz, S Natarajan, S P ABordas, PKerfriden, TRabczuk. Linear buckling analysis of cracked plates by SFEM and XFEM. Journal of Mechanics of Materials and Structures, 2011, 6(9–10): 1213–1238
https://doi.org/10.2140/jomms.2011.6.1213
65 GZheng, X Cui, GLi, SWu. An edge-based smoothed triangle element for non-linear explicit dynamic analysis of shells. Computational Mechanics, 2011, 48(1): 65–80
https://doi.org/10.1007/s00466-011-0582-9
66 C TWu, H P Wang. An enhanced cell-based smoothed finite element method for the analysis of Reissner-Mindlin plate bending problems involving distorted mesh. International Journal for Numerical Methods in Engineering, 2013, 95(4): 288–312
https://doi.org/10.1002/nme.4506
67 TNguyen-Thoi, T Bui-Xuan, PPhung-Van, SNguyen-Hoang, HNguyen-Xuan. An edge-based smoothed three-node Mindlin plate element (ES-MIN3) for static and free vibration analyses of plates. KSCE Journal of Civil Engineering, 2014, 18(4): 1072–1082
https://doi.org/10.1007/s12205-014-0002-8
68 HLuong-Van, T Nguyen-Thoi, G RLiu, PPhung-Van. A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic foundation. Engineering Analysis with Boundary Elements, 2014, 42: 8–19
https://doi.org/10.1016/j.enganabound.2013.11.008
69 X JÉlie-Dit-Cosaque, AGakwaya, HNaceur. Smoothed finite element method implemented in a resultant eight-node solid-shell element for geometrical linear analysis. Computational Mechanics, 2015, 55(1): 105–126
https://doi.org/10.1007/s00466-014-1085-2
70 PPhung-Van, T Nguyen-Thoi, TBui-Xuan, QLieu-Xuan. A cell-based smoothed three-node Mindlin plate element (CS-FEM-MIN3) based on the C 0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates. Computational Materials Science, 2015, 96: 549–558
https://doi.org/10.1016/j.commatsci.2014.04.043
71 TNguyen-Thoi, T Rabczuk, VHo-Huu, LLe-Anh, HDang-Trung, TVo-Duy. An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates. International Journal of Computational Methods, 2016, 2016: 1750011
72 X YCui, G R Liu, G Y Li. Bending and vibration responses of laminated composite plates using an edge-based smoothing technique. Engineering Analysis with Boundary Elements, 2011, 35(6): 818–826
https://doi.org/10.1016/j.enganabound.2011.01.007
73 M THerath, S Natarajan, B GPrusty, N SJohn. Smoothed finite element and genetic algorithm based optimization for shape adaptive composite marine propellers. Composite Structures, 2014, 109: 189–197
https://doi.org/10.1016/j.compstruct.2013.10.016
74 ELi, Z Zhang, C CChang, G RLiu, QLi. Numerical homogenization for incompressible materials using selective smoothed finite element method. Composite Structures, 2015, 123: 216–232
https://doi.org/10.1016/j.compstruct.2014.12.016
75 T NTran, G R Liu, H Nguyen-Xuan, TNguyen-Thoi. An edge-based smoothed finite element method for primal-dual shakedown analysis of structures. International Journal for Numerical Methods in Engineering, 2010, 82(7): 917–938
76 HNguyen-Xuan, T Rabczuk. Adaptive selective ES-FEM limit analysis of cracked plane-strain structures. Frontiers of Structural and Civil Engineering, 2015, 9(4): 478–490
https://doi.org/10.1007/s11709-015-0317-7
77 LChen, G R Liu, N Nourbakhsh, KZeng. A singular edge-based smoothed finite element method (ES-FEM) for bimaterial interface cracks. Computational Mechanics, 2010, 45(2–3): 109–125
https://doi.org/10.1007/s00466-009-0422-3
78 G RLiu, L Chen, TNguyen- KThoi, G YZeng, Zhang. A novel singular node-based smoothed finite element method (NS-FEM) for upper bound solutions of fracture problems. International Journal for Numerical Methods in Engineering, 2010, 83(11): 1466–1497
https://doi.org/10.1002/nme.2868
79 G RLiu, N Nourbakhshnia, LChen, Y WZhang. A novel general formulation for singular stress field using the ES-FEM method for the analysis of mixed-mode cracks. International Journal of Computational Methods, 2010, 7(1): 191–214
https://doi.org/10.1142/S0219876210002131
80 G RLiu, N Nourbakhshnia, Y WZhang. A novel singular ES-FEM method for simulating singular stress fields near the crack tips for linear fracture problems. Engineering Fracture Mechanics, 2011, 78(6): 863–876
https://doi.org/10.1016/j.engfracmech.2009.11.004
81 NNourbakhshnia, G R Liu. A quasi-static crack growth simulation based on the singular ES-FEM. International Journal for Numerical Methods in Engineering, 2011, 88(5): 473–492
https://doi.org/10.1002/nme.3186
82 LChen, G R Liu, Y Jiang, KZeng, JZhang. A singular edge-based smoothed finite element method (ES-FEM) for crack analyses in anisotropic media. Engineering Fracture Mechanics, 2011, 78(1): 85–109
https://doi.org/10.1016/j.engfracmech.2010.09.018
83 YJiang, G R Liu, Y W Zhang, L Chen, T ETay. A singular ES-FEM for plastic fracture mechanics. Computer Methods in Applied Mechanics and Engineering, 2011, 200(45–46): 2943–2955
https://doi.org/10.1016/j.cma.2011.06.001
84 LChen, G R Liu, K Zeng, JZhang. A novel variable power singular element in G space with strain smoothing for bi-material fracture analyses. Engineering Analysis with Boundary Elements, 2011, 35(12): 1303–1317
https://doi.org/10.1016/j.enganabound.2011.06.007
85 LChen, G R Liu, K Zeng. A combined extended and edge-based smoothed finite element method (ES-XFEM) for fracture analysis of 2D elasticity. International Journal of Computational Methods, 2011, 8(4): 773–786
https://doi.org/10.1142/S0219876211002812
86 NNourbakhshnia, G R Liu. Fatigue analysis using the singular ES-FEM. International Journal of Fatigue, 2012, 40: 105–111
https://doi.org/10.1016/j.ijfatigue.2011.12.018
87 HNguyen-Xuan, G R Liu, N Nourbakhshnia, LChen. A novel singular ES-FEM for crack growth simulation. Engineering Fracture Mechanics, 2012, 84: 41–66
https://doi.org/10.1016/j.engfracmech.2012.01.001
88 PLiu, T Q Bui, C Zhang, T TYu, G RLiu, M VGolub. The singular edge-based smoothed finite element method for stationary dynamic crack problems in 2D elastic solids. Computer Methods in Applied Mechanics and Engineering, 2012, 233–236: 68–80
https://doi.org/10.1016/j.cma.2012.04.008
89 YJiang, T E Tay, LChen, X S.Sun An edge-based smoothed XFEM for fracture in composite materials. International Journal of Fracture, 2013, 179(1–2):179–199
90 HNguyen-Xuan, G R Liu, S Bordas, SNatarajan, TRabczuk. An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Computer Methods in Applied Mechanics and Engineering, 2013, 253: 252–273
https://doi.org/10.1016/j.cma.2012.07.017
91 NVu-Bac, H Nguyen-Xuan, LChen, C KLee, GZi, X Zhuang, G RLiu, TRabczuk. A phantom-node method with edge-based strain smoothing for linear elastic fracture mechanics. Journal of Applied Mathematics, 2013, 2013: 1
https://doi.org/10.1155/2013/978026
92 G RLiu, L Chen, MLi. S-FEM for fracture problems, theory, formulation and application. International Journal of Computational Methods, 2014, 11(03): 1343003
https://doi.org/10.1142/S0219876213430032
93 P NJiki, J U Agber. Damage evaluation in gap tubular truss ‘K’ bridge joints using SFEM. Journal of Constructional Steel Research, 2014, 93: 135–142
https://doi.org/10.1016/j.jcsr.2013.10.010
94 YJiang, T E Tay, L Chen, Y WZhang. Extended finite element method coupled with face-based strain smoothing technique for three-dimensional fracture problems. International Journal for Numerical Methods in Engineering, 2015, 102(13): 1894–1916
https://doi.org/10.1002/nme.4878
95 WZeng, G R Liu, C Jiang, X WDong, H DChen, YBao, Y Jiang. An effective fracture analysis method based on the virtual crack closure-integral technique implemented in CS-FEM. Applied Mathematical Modelling, 2016, 40(5–6): 3783–3800
https://doi.org/10.1016/j.apm.2015.11.001
96 HChen, Q Wang, G RLiu, YWang, J Sun. Simulation of thermoelastic crack problems using singular edge-based smoothed finite element method. International Journal of Mechanical Sciences, 2016, 115–116: 123–134
https://doi.org/10.1016/j.ijmecsci.2016.06.012
97 LWu, P Liu, CShi, ZZhang, T QBui, DJiao. Edge-based smoothed extended finite element method for dynamic fracture analysis. Applied Mathematical Modelling, 2016, 40(19–20): 8564–8579
https://doi.org/10.1016/j.apm.2016.05.027
98 G RLiu, W Zeng, HNguyen-Xuan. Generalized stochastic cell-based smoothed finite element method (GS_CS-FEM) for solid mechanics. Finite Elements in Analysis and Design, 2013, 63: 51–61
https://doi.org/10.1016/j.finel.2012.08.007
99 X BHu, X Y Cui, H Feng, G YLi. Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method. Engineering Analysis with Boundary Elements, 2016, 70: 40–55
https://doi.org/10.1016/j.enganabound.2016.06.002
100 Z QZhang, G R Liu. Temporal stabilization of the node-based smoothed finite element method and solution bound of linear elastostatics and vibration problems. Computational Mechanics, 2010, 46(2): 229–246
https://doi.org/10.1007/s00466-009-0420-5
101 Z QZhang, G R Liu. Upper and lower bounds for natural frequencies: a property of the smoothed finite element methods. International Journal for Numerical Methods in Engineering, 2010, 84(2): 149–178
https://doi.org/10.1002/nme.2889
102 LWang, D Han, G RLiu, XCui. Free vibration analysis of double-walled carbon nanotubes using the smoothed finite element method. International Journal of Computational Methods, 2011, 8(4): 879–890
https://doi.org/10.1142/S0219876211002873
103 ZHe, G Li, ZZhong, ACheng, GZhang, ELi. An improved modal analysis for three-dimensional problems using face-based smoothed finite element method. Acta Mechanica Solida Sinica, 2013, 26(2): 140–150
https://doi.org/10.1016/S0894-9166(13)60014-2
104 X YCui, G Y Li, G R Liu. An explicit smoothed finite element method (SFEM) for elastic dynamic problems. International Journal of Computational Methods, 2013, 10(1): 1340002
https://doi.org/10.1142/S0219876213400021
105 TNguyen-Thoi, P Phung-Van, TRabczuk, HNguyen-Xuan, CLe-Van. Free and forced vibration analysis using the n-sided polygonal cell-based smoothed finite element method (nCS-FEM). International Journal of Computational Methods, 2013, 10(01): 1340008
https://doi.org/10.1142/S0219876213400082
106 HFeng, X Y Cui, G Y Li, S Z Feng. A temporal stable node-based smoothed finite element method for three-dimensional elasticity problems. Computational Mechanics, 2014, 53(5): 859–876
https://doi.org/10.1007/s00466-013-0936-6
107 GYang, D Hu, GMa, DWan. A novel integration scheme for solution of consistent mass matrix in free and forced vibration analysis. Meccanica, 2016, 51(8): 1897–1911
https://doi.org/10.1007/s11012-015-0343-5
108 X YCui, X Hu, G YLi, G RLiu. A modified smoothed finite element method for static and free vibration analysis of solid mechanics. International Journal of Computational Methods, 2016, 13(6), 1650043
https://doi.org/10.1142/S0219876216500432
109 Z CHe, G R Liu, Z H Zhong, G Y Zhang, A G Cheng. Dispersion free analysis of acoustic problems using the alpha finite element method. Computational Mechanics, 2010, 46(6): 867–881
https://doi.org/10.1007/s00466-010-0516-y
110 Z CHe, G R Liu, Z H Zhong, G Y Zhang, A G Cheng. Coupled analysis of 3D structural–acoustic problems using the edge-based smoothed finite element method/finite element method. Finite Elements in Analysis and Design, 2010, 46(12): 1114–1121
https://doi.org/10.1016/j.finel.2010.08.003
111 L YYao, D J Yu, X Y Cui, X G Zang. Numerical treatment of acoustic problems with the smoothed finite element method. Applied Acoustics, 2010, 71(8): 743–753
https://doi.org/10.1016/j.apacoust.2010.03.006
112 Z CHe, A G Cheng, G Y Zhang, Z H Zhong, G R Liu. Dispersion error reduction for acoustic problems using the edge‐based smoothed finite element method (ES-FEM). International Journal for Numerical Methods in Engineering, 2011, 86(11): 1322–1338
https://doi.org/10.1002/nme.3100
113 Z CHe, G Y Li, Z H Zhong, A G Cheng, G Y Zhang, E Li, G RLiu. An ES-FEM for accurate analysis of 3D mid-frequency acoustics using tetrahedron mesh. Computers & Structures, 2012, 106–107: 125–134
https://doi.org/10.1016/j.compstruc.2012.04.014
114 WLi, Y Chai, MLei, G RLiu. Analysis of coupled structural-acoustic problems based on the smoothed finite element method (S-FEM). Engineering Analysis with Boundary Elements, 2014, 42: 84–91
https://doi.org/10.1016/j.enganabound.2013.08.009
115 ELi, Z C He, X Xu, G RLiu. Hybrid smoothed finite element method for acoustic problems. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 664–688
https://doi.org/10.1016/j.cma.2014.09.021
116 Z CHe, G Y Li, G R Liu, A G Cheng, E Li. Numerical investigation of ES-FEM with various mass re-distribution for acoustic problems. Applied Acoustics, 2015, 89: 222–233
https://doi.org/10.1016/j.apacoust.2014.09.017
117 FWu, G R Liu, G Y Li, A G Cheng, Z C He, Z H Hu. A novel hybrid FS‐FEM/SEA for the analysis of vibro-acoustic problems. International Journal for Numerical Methods in Engineering, 2015, 102(12): 1815–1829
https://doi.org/10.1002/nme.4871
118 ZHe, G Li, GZhang, G RLiu, YGu, E Li. Acoustic analysis using a mass-redistributed smoothed finite element method with quadrilateral mesh. Engineering Computation, 2015, 32(8): 2292–2317
https://doi.org/10.1108/EC-10-2014-0219
119 Z CHe, E Li, G YLi, FWu, G R Liu, X Nie. Acoustic simulation using α-FEM with a general approach for reducing dispersion error. Engineering Analysis with Boundary Elements, 2015, 61: 241–253
https://doi.org/10.1016/j.enganabound.2015.07.018
120 GWang, X Y Cui, H Feng, G YLi. A stable node-based smoothed finite element method for acoustic problems. Computer Methods in Applied Mechanics and Engineering, 2015, 297: 348–370
https://doi.org/10.1016/j.cma.2015.09.005
121 GWang, X Y Cui, Z M Liang, G Y Li. A coupled smoothed finite element method (S-FEM) for structural-acoustic analysis of shells. Engineering Analysis with Boundary Elements, 2015, 61: 207–217
https://doi.org/10.1016/j.enganabound.2015.07.017
122 YChai, W Li, ZGong, TLi. Hybrid smoothed finite element method for two-dimensional underwater acoustic scattering problems. Ocean Engineering, 2016, 116: 129–141
https://doi.org/10.1016/j.oceaneng.2016.02.034
123 YChai, W Li, ZGong, TLi. Hybrid smoothed finite element method for two dimensional acoustic radiation problems. Appl Acoust., 2016, 103: 90–101
124 FWu, Z C He, G R Liu, G Y Li, A G Cheng. A novel hybrid ES-FE-SEA for mid-frequency prediction of Transmission losses in complex acoustic systems. Applied Acoustics, 2016, 111: 198–204
https://doi.org/10.1016/j.apacoust.2016.04.011
125 VKumar, R Metha. Impact simulations using smoothed finite element method. International Journal of Computational Methods, 2013, 10(4): 1350012
https://doi.org/10.1142/S0219876213500126
126 TNguyen-Thoi, G R Liu, H Nguyen-Xuan, CNguyen-Tran. Adaptive analysis using the node-based smoothed finite element method (NS-FEM). International Journal for Numerical Methods in Biomedical Engineering, 2011, 27(2): 198–218
https://doi.org/10.1002/cnm.1291
127 HNguyen-Xuan, C T Wu, G R Liu. An adaptive selective ES-FEM for plastic collapse analysis. European Journal of Mechanics-A/Solids, 2016, 58: 278–290
https://doi.org/10.1016/j.euromechsol.2016.02.005
128 M JKazemzadeh-Parsi, FDaneshmand. Solution of geometric inverse heat conduction problems by smoothed fixed grid finite element method. Finite Elements in Analysis and Design, 2009, 45(10): 599–611
https://doi.org/10.1016/j.finel.2009.03.008
129 ELi, G R Liu, V Tan. Simulation of hyperthermia treatment using the edge-based smoothed finite-element method. Numerical Heat Transfer, 2010, 57(11): 822–847
https://doi.org/10.1080/10407782.2010.489483
130 ELi, G R Liu, V Tan, Z CHe. An efficient algorithm for phase change problem in tumor treatment using αFEM. International Journal of Thermal Sciences, 2010, 49(10): 1954–1967
https://doi.org/10.1016/j.ijthermalsci.2010.06.003
131 VKumar. Smoothed finite element methods for thermo-mechanical impact problems. International Journal of Computational Methods, 2013, 10(1): 1340010
https://doi.org/10.1142/S0219876213400100
132 B YXue, S C Wu, W H Zhang, G R Liu. A smoothed FEM (S-FEM) for heat transfer problems. International Journal of Computational Methods, 2013, 10(1): 1340001
https://doi.org/10.1142/S021987621340001X
133 S ZFeng, X Y Cui, G Y Li. Analysis of transient thermo-elastic problems using edge-based smoothed finite element method. International Journal of Thermal Sciences, 2013, 65: 127–135
https://doi.org/10.1016/j.ijthermalsci.2012.10.007
134 S ZFeng, X Y Cui, G Y Li, H Feng, F XXu. Thermo-mechanical analysis of functionally graded cylindrical vessels using edge-based smoothed finite element method. International Journal of Pressure Vessels and Piping, 2013, 111–112: 302–309
https://doi.org/10.1016/j.ijpvp.2013.09.004
135 S ZFeng, X Y Cui, G Y Li. Transient thermal mechanical analyses using a face-based smoothed finite element method (FS-FEM). International Journal of Thermal Sciences, 2013, 74: 95–103
https://doi.org/10.1016/j.ijthermalsci.2013.07.002
136 ELi, Z C He, X Xu. An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for thermomechanical problems. International Journal of Heat and Mass Transfer, 2013, 66: 723–732
https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.063
137 SFeng, X Cui, GLi. Thermo-mechanical analyses of composite structures using face-based smoothed finite element method. International Journal of Applied Mechanics, 2014, 6(2): 1450020
https://doi.org/10.1142/S1758825114500203
138 ELi, Z Zhang, Z CHe, XXu, G R Liu, Q Li. Smoothed finite element method with exact solutions in heat transfer problems. International Journal of Heat and Mass Transfer, 2014, 78: 1219–1231
https://doi.org/10.1016/j.ijheatmasstransfer.2014.07.078
139 SFeng, X Cui, GLi. Thermo-mechanical analysis of composite pressure vessels using edge-based smoothed finite element method. International Journal of Computational Methods, 2014, 11(6): 1350089
https://doi.org/10.1142/S0219876213500898
140 X YCui, Z C Li, H Feng, S ZFeng. Steady and transient heat transfer analysis using a stable node-based smoothed finite element method. International Journal of Thermal Sciences, 2016, 110: 12–25
https://doi.org/10.1016/j.ijthermalsci.2016.06.027
141 HNguyen-Xuan, G R Liu, T Nguyen-Thoi, CNguyen-Tran. An edge-based smoothed finite element method for analysis of two-dimensional piezoelectric structures. Smart Materials and Structures, 2009, 18(6): 065015
https://doi.org/10.1088/0964-1726/18/6/065015
142 M SOlyaie, M R Razfar, E J Kansa. Reliability based topology optimization of a linear piezoelectric micromotor using the cell-based smoothed finite element method. Computer Modeling in Engineering & Sciences, 2011, 75(1): 43–87
143 M SOlyaie, M R Razfar, S Wang, E JKansa. Topology optimization of a linear piezoelectric micromotor using the smoothed finite element method. Computer Modeling in Engineering & Sciences, 2011, 82(1): 55–81
144 LChen, Y W Zhang, G R Liu, H Nguyen-Xuan, Z QZhang. A stabilized finite element method for certified solution with bounds in static and frequency analyses of piezoelectric structures. Computer Methods in Applied Mechanics and Engineering, 2012, 241–244: 65–81
https://doi.org/10.1016/j.cma.2012.05.018
145 ELi, Z C He, L Chen, BLi, XXu, G R Liu. An ultra-accurate hybrid smoothed finite element method for piezoelectric problem. Engineering Analysis with Boundary Elements, 2015, 50: 188–197
https://doi.org/10.1016/j.enganabound.2014.08.005
146 K S RAtia, A MHeikal, S S AObayya. Efficient smoothed finite element time domain analysis for photonic devices. Optics Express, 2015, 23(17): 22199–22213
https://doi.org/10.1364/OE.23.022199
147 Z CHe, G R Liu, Z H Zhong, G Y Zhang, A G Cheng. A coupled ES-FEM/BEM method for fluid-structure interaction problems. Engineering Analysis with Boundary Elements, 2011, 35(1): 140–147
https://doi.org/10.1016/j.enganabound.2010.05.003
148 Z QZhang, G R Liu, B C Khoo. Immersed smoothed finite element method for two dimensional fluid-structure interaction problems. International Journal for Numerical Methods in Engineering, 2012, 90(10): 1292–1320
https://doi.org/10.1002/nme.4299
149 JYao, G R Liu, D A Narmoneva, R B Hinton, Z Q Zhang. Immersed smoothed finite element method for fluid-structure interaction simulation of aortic valves. Computational Mechanics, 2012, 50(6): 789–804
https://doi.org/10.1007/s00466-012-0781-z
150 Z QZhang, G R Liu, B C Khoo. A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems. Computational Mechanics, 2013, 51(2): 129–150
https://doi.org/10.1007/s00466-012-0710-1
151 TNguyen-Thoi, P Phung-Van, TRabczuk, HNguyen-Xuan, CLe-Van. An application of the ES-FEM in solid domain for dynamic analysis of 2D fluid–solid interaction problems. International Journal of Computational Methods, 2013, 10(1): 1340003
https://doi.org/10.1142/S0219876213400033
152 SWang, B C Khoo, G R Liu, G X Xu, L Chen. Coupling GSM/ALE with ES-FEM-T3 for fluid-deformable structure interactions. Journal of Computational Physics, 2014, 276: 315–340
https://doi.org/10.1016/j.jcp.2014.07.016
153 TNguyen-Thoi, P Phung-Van, SNguyen-Hoang, QLieu-Xuan (2014) A smoothed coupled NS/nES-FEM for dynamic analysis of 2D fluid-solid interaction problems.
154 THe. On a partitioned strong coupling algorithm for modeling fluid-structure interaction. International Journal of Applied Mechanics, 2015, 7(2): 1550021
https://doi.org/10.1142/S1758825115500210
155 THe. Semi-implicit coupling of CS-FEM and FEM for the interaction between a geometrically nonlinear solid and an incompressible fluid. International Journal of Computational Methods, 2015, 12(5): 1550025
https://doi.org/10.1142/S0219876215500255
156 Z QZhang, G R Liu. Solution bound and nearly exact solution to nonlinear solid mechanics problems based on the smoothed FEM concept. Engineering Analysis with Boundary Elements, 2014, 42: 99–114
https://doi.org/10.1016/j.enganabound.2014.02.003
157 CJiang, Z Q Zhang, X Han, G RLiu. Selective smoothed finite element methods for extremely large deformation of anisotropic incompressible bio-tissues. International Journal for Numerical Methods in Engineering, 2014, 99(8): 587–610
https://doi.org/10.1002/nme.4694
158 YOnishi, K Amaya. A locking-free selective smoothed finite element method using tetrahedral and triangular elements with adaptive mesh rezoning for large deformation problems. International Journal for Numerical Methods in Engineering, 2014, 99(5): 354–371
https://doi.org/10.1002/nme.4684
159 CJiang, G R Liu, X Han, Z QZhang, WZeng. A smoothed finite element method for analysis of anisotropic large deformation of passive rabbit ventricles in diastole. International Journal for Numerical Methods in Biomedical Engineering, 2015, 31(1): 1–25
https://doi.org/10.1002/cnm.2697
160 YOnishi, R Iida, KAmaya. F-bar aided edge-based smoothed finite element method using tetrahedral elements for finite deformation analysis of nearly incompressible solids. International Journal for Numerical Methods in Engineering, 2015, 109: 771–773
https://doi.org/10.1002/nme.5337
161 ELi, J Chen, ZZhang, JFang, G R Liu, Q Li. Smoothed finite element method for analysis of multi-layered systems‐Applications in biomaterials. Computers & Structures, 2016, 168: 16–29
https://doi.org/10.1016/j.compstruc.2016.02.003
162 ELi, W H Liao. An efficient finite element algorithm in elastography. International Journal of Applied Mechanics, 2016, 8(3): 1650037
https://doi.org/10.1142/S175882511650037X
163 R PNiu, G R Liu, J H Yue. Development of a software package of smoothed finite element method (S-FEM) for solid mechanics problems. International Journal of Computational Methods, 2018, 15(3): 1845004
https://doi.org/10.1142/S0219876218450044
164 CJiang, X Han, Z QZhang, G RLiu, G JGao. A locking-free face-based S-FEM via averaging nodal pressure using 4-nodes tetrahedrons for 3D explicit dynamics and quasi-statics. International Journal of Computational Methods, 2018, 15(6): 1850043
https://doi.org/10.1142/S0219876218500433
165 JYue, G R Liu, M Li, RNiu. A cell-based smoothed finite element method for multi-body contact analysis using linear complementarity formulation. International Journal of Solids and Structures, 2018, 141–142: 110–126
https://doi.org/10.1016/j.ijsolstr.2018.02.016
166 C FDu, D G Zhang, L Li, G RLiu. A node-based smoothed point interpolation method for dynamic analysis of rotating flexible beams. Chinese Journal of Theoretical and Applied Mechanics, 2018, 34(2): 409–420
https://doi.org/10.1007/s10409-017-0713-4
167 WZeng, G R Liu. Smoothed finite element methods (S-FEM): an overview and recent developments. Archives of Computational Methods in Engineering, 2018, 25(2): 397–435
https://doi.org/10.1007/s11831-016-9202-3
168 Y HLi, M Li, G RLiu. A novel alpha smoothed finite element method for ultra-accurate solution using quadrilateral elements. International Journal of Computational Methods, 2018, 15(3): 1845008
https://doi.org/10.1142/S0219876218450081
169 XRong, R Niu, GLiu. Stability analysis of smoothed finite element methods with explicit method for transient heat transfer problems. International Journal of Computational Methods, 2018, 15(3): 1845005
https://doi.org/10.1142/S0219876218450056
170 J FZhang, R P Niu, Y F Zhang, C Q Wang, M Li, G RLiu. Development of SFEM-Pre: a novel preprocessor for model creation for the smoothed finite element method. International Journal of Computational Methods, 2018, 15(1): 1845002
https://doi.org/10.1142/S0219876218450020
171 CJiang, Z Q Zhang, X Han, GLiu, TLin. A cell-based smoothed finite element method with semi-implicit CBS procedures for incompressible laminar viscous flows. International Journal for Numerical Methods in Fluids, 2018, 86(1): 20–45
https://doi.org/10.1002/fld.4406
172 FWu, W Zeng, L YYao, G RLiu. A generalized probabilistic edge-based smoothed finite element method for elastostatic analysis of Reissner-Mindlin plates. Applied Mathematical Modelling, 2018, 53: 333–352
https://doi.org/10.1016/j.apm.2017.09.005
173 TNguyen-Thoi, T Bui-Xuan, G RLiu, TVo-Duy. Static and free vibration analysis of stiffened flat shells by a cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using three-node triangular elements. International Journal of Computational Methods, 2018, 15(6): 1850056
https://doi.org/10.1142/S0219876218500561
174 SBhowmick, G R Liu. On singular ES-FEM for fracture analysis of solids with singular stress fields of arbitrary order. Engineering Analysis with Boundary Elements, 2018, 86: 64–81
https://doi.org/10.1016/j.enganabound.2017.10.013
175 CJiang, X Han, G RLiu, Z QZhang, GYang, G J Gao. Smoothed finite element methods (S-FEMs) with polynomial pressure projection (P3) for incompressible solids. Engineering Analysis with Boundary Elements, 2017, 84: 253–269
https://doi.org/10.1016/j.enganabound.2017.07.022
176 G RLiu, M Chen, MLi. Lower bound of vibration modes using the node-based smoothed finite element method (NS-FEM). International Journal of Computational Methods, 2017, 14(4): 1750036
https://doi.org/10.1142/S0219876217500360
177 C FDu, D G Zhang, G R Liu. A cell-based smoothed finite element method for free vibration analysis of a rotating plate. International Journal of Computational Methods, 2017, 14(5): 1840003
https://doi.org/10.1142/S0219876218400030
178 YChai, W Li, G RLiu, ZGong, T Li. A superconvergent alpha finite element method (SαFEM) for static and free vibration analysis of shell structures. Computers & Structures, 2017, 179: 27–47
https://doi.org/10.1016/j.compstruc.2016.10.021
179 YLi, J H Yue, R P Niu, G R Liu. Automatic mesh generation for 3D smoothed finite element method (S-FEM) based on the weaken-weak formulation. Advances in Engineering Software, 2016, 99: 111–120
https://doi.org/10.1016/j.advengsoft.2016.05.012
180 J HYue, M Li, G RLiu, R PNiu. Proofs of the stability and convergence of a weakened weak method using PIM shape functions. Computers & Mathematics with Applications, 2016, 72(4): 933–951
https://doi.org/10.1016/j.camwa.2016.06.002
181 MChen, M Li, G RLiu. Mathematical basis of g spaces. International Journal of Computational Methods, 2016, 13(4): 1641007
https://doi.org/10.1142/S0219876216410073
182 ATootoonchi, A Khoshghalb, G RLiu, NKhalili. A cell-based smoothed point interpolation method for flow-deformation analysis of saturated porous media. Computers and Geotechnics, 2016, 75: 159–173
https://doi.org/10.1016/j.compgeo.2016.01.027
183 G RLiu. On partitions of unity property of nodal shape functions: rigid-body-movement reproduction and mass conservation. International Journal of Computational Methods, 2016, 13(02): 1640003
https://doi.org/10.1142/S021987621640003X
184 Z CHe, G Y Zhang, L Deng, ELi, G RLiu. Topology optimization using node-based smoothed finite element method. International Journal of Applied Mechanics, 2015, 7(06): 1550085
https://doi.org/10.1142/S1758825115500854
185 HNguyen-Xuan, G R Liu. An edge-based finite element method (ES-FEM) with adaptive scaled-bubble functions for plane strain limit analysis. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 877–905
https://doi.org/10.1016/j.cma.2014.12.014
186 C TWu, W Hu, G RLiu. Bubble-enhanced smoothed finite element formulation: a variational multi-scale approach for volume-constrained problems in two-dimensional linear elasticity. International Journal for Numerical Methods in Engineering, 2014, 100(5): 374–398
https://doi.org/10.1002/nme.4751
187 CJiang, Z Q Zhang, X Han, G RLiu. Selective smoothed finite element methods for extremely large deformation of anisotropic incompressible bio-tissues. International Journal for Numerical Methods in Engineering, 2014, 99(8): 587–610
https://doi.org/10.1002/nme.4694
188 FWu, G R Liu, G Y Li, Y J Liu, Z C He. A coupled ES-BEM and FM-BEM for structural acoustic problems. Noise Control Engineering Journal, 2014, 62(4): 196–209
https://doi.org/10.3397/1/376220
189 DHu, Y Wang, G RLiu, TLi, X Han, Y TGu. A sub-domain smoothed Galerkin method for solid mechanics problems. International Journal for Numerical Methods in Engineering, 2014, 98(11): 781–798
https://doi.org/10.1002/nme.4650
190 YLi, M Li, G RLiu. A modified triangulation algorithm tailored for the smoothed finite element method (S-FEM). International Journal of Computational Methods, 2014, 11(01): 1350069
https://doi.org/10.1142/S0219876213500692
191 S PTimoshenko, J NGoodier. Theory of Elasticity. 3rd ed. New York: McGraw-Hill, 1970
192 NguyenT-Thoi, G R Liu , HNguyen-Xuan. An n-sided polygonal edge-based smoothed finite element method (nES-FEM) for solid mechanics. International Journal for Numerical Methods in Biomedical Engineering, 2011, 27(9): 1446–1472
193 SWang. An ABAQUS implementation of the cell-based smoothed finite element method using quadrilateral elements. Thesis for the Masterrsquo;s Degree. Cincinnati: University of Cincinnati, 2014
194 G RLiu, Y Li, K YDai, M TLuan, WXue. A linearly conforming radial point interpolation method for solid mechanics problems. International Journal of Computational Methods, 2006, 3(4): 401–428
https://doi.org/10.1142/S0219876206001132
195 T HOng, C E Heaney, C K Lee, G R Liu, H Nguyen-Xuan. On stability, convergence and accuracy of bES-FEM and bFS-FEM for nearly incompressible elasticity. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 315–345
https://doi.org/10.1016/j.cma.2014.10.022
196 C TWu, W Hu, G RLiu. Bubble-enhanced smoothed finite element formulation: a variational multi-scale approach for volume-constrained problems in two-dimensional linear elasticity. International Journal for Numerical Methods in Engineering, 2014, 100(5): 374–398
https://doi.org/10.1002/nme.4751
197 LLeonetti, G Garcea, HNguyen-Xuan. A mixed edge-based smoothed finite element method (MES-FEM) for elasticity. Computers & Structures, 2016, 173: 123–138
https://doi.org/10.1016/j.compstruc.2016.06.003
199 WZeng, G R Liu, C Jiang, TNguyen-Thoi, YJiang. A generalized beta finite element method with coupled smoothing techniques for solid mechanics. Engineering Analysis with Boundary Elements, 2016, 73: 103–119
https://doi.org/10.1016/j.enganabound.2016.09.008
200 G RLiu. On partitions of unity property of nodal shape functions: rigid-body-movement reproduction and mass conservation. International Journal of Computational Methods, 2016, 13(2): 1640003
https://doi.org/10.1142/S021987621640003X
201 J HYue, M Li, G RLiu, R PNiu. Proofs of the stability and convergence of a weakened weak method using PIM shape functions. Computers & Mathematics with Applications, 2016, 72(4): 933–951
https://doi.org/10.1016/j.camwa.2016.06.002
202 G RLiu, G Y Zhang, Y Y Wang, Z H Zhong, G Y Li, X Han. A nodal integration technique for meshfree radial point interpolation method (NI-RPCM). International Journal of Solids and Structures, 2007, 44(11–12): 3840–3860
https://doi.org/10.1016/j.ijsolstr.2006.10.025
203 G RLiu, M B Liu. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. Singapore: World Scientific, 2003
204 M BLiu, G R Liu. Smoothed particle hydrodynamics (SPH): an overview and recent developments. Archives of Computational Methods in Engineering, 2010, 17(1): 25–76
https://doi.org/10.1007/s11831-010-9040-7
205 M BLiu, G R Liu, L W Zhou, J Z Chang. Dissipative particle dynamics (DPD): an overview and recent developments. Archives of Computational Methods in Engineering, 2015, 17(1): 25–76
https://doi.org/10.1007/s11831-010-9040-7
206 JLiu, Z Q Zhang, G Y Zhang. A smoothed finite element method (S-FEM) for large-deformation elastoplastic analysis. International Journal of Computational Methods, 2015, 12(4): 1–26
https://doi.org/10.1142/S0219876215400113
207 ELi, Z Zhang, C CChang, SZhou, G R Liu, Q Li. A new homogenization formulation for multifunctional composites. International Journal of Computational Methods, 2016, 13(2): 1640002
https://doi.org/10.1142/S0219876216400028
209 G RLiu, X Han, Y GXu, K YLam. Material characterization of functionally graded material using elastic waves and a progressive learning neural network. Composites Science and Technology, 2001, 61(10): 1401–1411
https://doi.org/10.1016/S0266-3538(01)00033-1
210 G RLiu, X Han, K YLam. Determination of elastic constants of anisotropic laminated plates using elastic waves and a progressive neural network. Journal of Sound and Vibration, 2002, 252(2): 239–259
https://doi.org/10.1006/jsvi.2001.3814
211 G RLiu, X Han. Computational inverse techniques in nondestructive evaluation, CRC Press, 2003
212 YLi, G R Liu. An element-free smoothed radial point interpolation method (EFS-RPIM) for 2D and 3D solid mechanics problems. Computers and Mathematics with Applications, 2018, doi: 10.1016/j.camwa.2018.09.047
213 G RLiu. A novel pick-out theory and technique for constructing the smoothed derivatives of functions for numerical methods. International Journal of Computational Methods, 2018, 15(3): 1850070
https://doi.org/10.1142/S0219876218500706
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed