Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

邮发代号 80-968

2019 Impact Factor: 1.68

Frontiers of Structural and Civil Engineering  2019, Vol. 13 Issue (5): 1120-1137   https://doi.org/10.1007/s11709-019-0540-8
  本期目录
An investigation of ballistic response of reinforced and sandwich concrete panels using computational techniques
Mohammad HANIFEHZADEH, Bora GENCTURK()
Sonny Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90007, USA
 全文: PDF(2600 KB)   HTML
Abstract

Structural performance of nuclear containment structures and power plant facilities is of critical importance for public safety. The performance of concrete in a high-speed hard projectile impact is a complex problem due to a combination of multiple failure modes including brittle tensile fracture, crushing, and spalling. In this study, reinforced concrete (RC) and steel-concrete-steel sandwich (SCSS) panels are investigated under high-speed hard projectile impact. Two modeling techniques, smoothed particle hydrodynamics (SPH) and conventional finite element (FE) analysis with element erosion are used. Penetration depth and global deformation are compared between doubly RC and SCSS panels in order to identify the advantages of the presence of steel plates over the reinforcement layers. A parametric analysis of the front and rear plate thicknesses of the SCSS configuration showed that the SCSS panel with a thick front plate has the best performance in controlling the hard projectile. While a thick rear plate is effective in the case of a large and soft projectile as the plate reduces the rear deformation. The effects of the impact angle and impact velocity are also considered. It was observed that the impact angle for the flat nose missile is critical and the front steel plate is effective in minimizing penetration depth.

Key wordsconcrete panels    projectile impact    finite element modeling    smoothed particle hydrodynamics    strain rate effect
收稿日期: 2018-07-18      出版日期: 2019-09-11
Corresponding Author(s): Bora GENCTURK   
 引用本文:   
. [J]. Frontiers of Structural and Civil Engineering, 2019, 13(5): 1120-1137.
Mohammad HANIFEHZADEH, Bora GENCTURK. An investigation of ballistic response of reinforced and sandwich concrete panels using computational techniques. Front. Struct. Civ. Eng., 2019, 13(5): 1120-1137.
 链接本文:  
https://academic.hep.com.cn/fsce/CN/10.1007/s11709-019-0540-8
https://academic.hep.com.cn/fsce/CN/Y2019/V13/I5/1120
Fig.1  
parameter value
concrete strength (MPa) 23
rear plate thickness (mm) 32
front plate thickness (mm) 19
concrete block thickness (mm) 679
concrete block width (mm) 2000
concrete block length (mm) 2000
Tab.1  
part element type No.of elements
missile C3DR 345
front plate1 C3DR 40000
rear plate1 C3DR 12800
concrete core C3DR 124400
reinforcement2 T3D2 4400
impact area PC3D 300000
Tab.2  
Fig.2  
parameter notation value
dilation angle Ψ 38
flow potential eccentricity 0.1
biaxial/uniaxial compression plastic stress ratio fb0/fc 1.16
second stress invariant ratio K 0.667
viscosity parameter µ 0.0001
Tab.3  
Fig.3  
parameter value
modulus of elasticity (MPa) Ec=5500f c'
tensile strength (MPa) ft=0.1 fc'
strain at maximum compressive stress 0.002
Poisson’s ratio 0.19
density (kg/m3) 2400
Tab.4  
part yield strength fy (MPa) Young’s modulus Es (GPa) yield strain ey ultimate stress fu (MPa) post-yield stiffness Eu (GPa) ultimate strain eu dynamic yield strength fyd (MPa)
reinforcement 475 190 0.002 751 18 0.12 688
plate 356 181 0.002 501 17 0.24 587
Tab.5  
Fig.4  
case number of elements min. concrete element size (mm) No. of elements through depth penetration depth (mm) rear deformation (mm)
fine 124,000 20 34 482 34
moderate 106,000 25 27 475 34
coarse 89,000 30 22 470 31
Tab.6  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
parameter experiment conventional FE method SPH method
penetration depth (mm) 504 482 516
rear displacement (mm) 43 34 41
Tab.7  
Fig.9  
parameter notation US customary converted SI
penetration depth X 1 inch 25.4 mm
impact velocity V 1 ft/s 304.8 mm/s
projectile diameter d 1 inch 25.4 mm
projectile weight W 1 lb 0.454 kg
Tab.8  
Fig.10  
case thickness (mm) penetration depth (mm) rear deformation (mm)
front rear
1 19 32 482 34
2 25 25 276 43
3 32 19 239 45
Tab.9  
Fig.11  
Fig.12  
Fig.13  
case impact velocity (m/s) kinetic energy (kJ) penetration depth (mm) rear deformation (mm) residual velocity (m/s)
1 200 1,000 219 10 0
2 314 2,464 482 34 0
3 400 4,000 6721 116 0
4 500 6,250 6721 176 0
5 600 9,000 6721 NA2 130
6 800 16,000 6721 NA2 310
7 1000 25,000 6721 NA2 440
8 1200 36,000 6721 NA2 530
9 1500 56,250 6721 NA2 720
Tab.10  
Fig.14  
Fig.15  
case impact angle (deg.) penetration depth (mm) rear deformation (mm)
1 90 482 34
2 75 647 39
3 60 523 23
4 45 324 17
5 30 74 3
6 15 0 1
Tab.11  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
velocity (m/s) kinetic energy (kJ) Max. rear deform.(mm) rebound velocity (m/s)
200 1000 8.3 9
300 2250 18.0 17
400 4000 31.9 22
600 9000 56.5 21
800 16000 78.9 23
Tab.12  
1 J G Nie, H S Hu, J S Fan, M X Tao, S Y Li, F J Liu. Experimental study on seismic behavior of high-strength concrete filled double-steel-plate composite walls. Journal of Constructional Steel Research, 2013, 88: 206–219
https://doi.org/10.1016/j.jcsr.2013.05.001
2 M Takeuchi, M Narikawa, I Matsuo, K Hara, S Usami. Study on a concrete filled structure for nuclear power plants. Nuclear Engineering and Design, 1998, 179(2): 209–223
https://doi.org/10.1016/S0029-5493(97)00282-3
3 K M A Sohel, J Y Richard Liew, C G Koh. Numerical modelling of lightweight steel-concrete-steel sandwich composite beams subjected to impact. Thin-walled Structures, 2015, 94: 135–146
https://doi.org/10.1016/j.tws.2015.04.001
4 M Ebad Sichani, J E Padgett, V Bisadi. Probabilistic seismic analysis of concrete dry cask structures. Structural Safety, 2018, 73: 87–98
https://doi.org/10.1016/j.strusafe.2018.03.001
5 H Jiang, M G Chorzepa. Aircraft impact analysis of nuclear safety-related concrete structures: A review. Engineering Failure Analysis, 2014, 46: 118–133
https://doi.org/10.1016/j.engfailanal.2014.08.008
6 C C Huang, T Y Wu. A study on dynamic impact of vertical concrete cask tip-over using explicit finite element analysis procedures. Annals of Nuclear Energy, 2009, 36(2): 213–221
https://doi.org/10.1016/j.anucene.2008.11.014
7 M Ebad Sichani, M Hanifehzadeh, J E Padgett, B Gencturk. Probabilistic analysis of vertical concrete dry casks subjected to tip-over and aging effects. Nuclear Engineering and Design, 2019, 343: 232–247
https://doi.org/10.1016/j.nucengdes.2018.12.003
8 J D Riera. On the stress analysis of structures subjected to aircraft impact forces. Nuclear Engineering and Design, 1968, 8(4): 415–426
https://doi.org/10.1016/0029-5493(68)90039-3
9 M Hanifehzadeh, B Gencturk, R Mousavi. A numerical study of spent nuclear fuel dry storage systems under extreme impact loading. Engineering Structures, 2018, 161(1): 68–81
https://doi.org/10.1016/j.engstruct.2018.01.068
10 K Sohel, J R Liew. Behavior of steel-concrete-steel sandwich slabs subject to impact load. Journal of Constructional Steel Research, 2014, 100: 163–175
https://doi.org/10.1016/j.jcsr.2014.04.018
11 M Abdel-Kader, A Fouda. Effect of reinforcement on the response of concrete panels to impact of hard projectiles. International Journal of Impact Engineering, 2014, 63: 1–17
https://doi.org/10.1016/j.ijimpeng.2013.07.005
12 J C Bruhl, A H Varma, J M Kim. Static resistance function for steel-plate composite (SC) walls subject to impactive loading. Nuclear Engineering and Design, 2015, 295: 843–859
https://doi.org/10.1016/j.nucengdes.2015.07.037
13 C Heckötter, A Vepsä. Experimental investigation and numerical analyses of reinforced concrete structures subjected to external missile impact. Progress in Nuclear Energy, 2015, 84: 56–67
https://doi.org/10.1016/j.pnucene.2015.02.007
14 Y B Sudhir Sastry, P R Budarapu, Y Krishna, S Devaraj. Studies on ballistic impact of the composite panels. Theoretical and Applied Fracture Mechanics, 2014, 72: 2–12
https://doi.org/10.1016/j.tafmec.2014.07.010
15 P R Budarapu, R Gracie, S W Yang, X Zhuang, T Rabczuk. Efficient coarse graining in multiscale modeling of fracture. Theoretical and Applied Fracture Mechanics, 2014, 69: 126–143
https://doi.org/10.1016/j.tafmec.2013.12.004
16 Y Wu, D Wang, C T Wu. Three dimensional fragmentation simulation of concrete structures with a nodally regularized meshfree method. Theoretical and Applied Fracture Mechanics, 2014, 72: 89–99
https://doi.org/10.1016/j.tafmec.2014.04.006
17 Y Wu, D Wang, C T Wu, H Zhang. A direct displacement smoothing meshfree particle formulation for impact failure modeling. International Journal of Impact Engineering, 2016, 87: 169–185
https://doi.org/10.1016/j.ijimpeng.2015.03.013
18 L Lucy. A numerical approach to the testing of the fission hypothesis. Astronomical Journal, 1977, 82: 1013–1024
https://doi.org/10.1086/112164
19 R A Gingold, J J Monaghan. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375–389
https://doi.org/10.1093/mnras/181.3.375
20 G R Liu, M B Liu. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. Singapore: World Scientific, 2003
21 T Rabczuk, T Belytschko. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
22 T Rabczuk, G Zi. A meshfree method based on the local partition of unity for cohesive cracks. Computational Mechanics, 2007, 39(6): 743–760
https://doi.org/10.1007/s00466-006-0067-4
23 T Rabczuk, J Eibl. Modelling dynamic failure of concrete with meshfree methods. International Journal of Impact Engineering, 2006, 32(11): 1878–1897
https://doi.org/10.1016/j.ijimpeng.2005.02.008
24 P Randles, L Libersky. Smoothed particle hydrodynamics: Some recent improvements and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1–4): 375–408
https://doi.org/10.1016/S0045-7825(96)01090-0
25 H Ren, X Zhuang, Y Cai, T Rabczuk. Dual-horizon peridynamics. International Journal for Numerical Methods in Engineering, 2016, 108(12): 1451–1476
https://doi.org/10.1002/nme.5257
26 G Hughes. Hard missile impact on reinforced concrete. Nuclear Engineering and Design, 1984, 77(1): 23–35
https://doi.org/10.1016/0029-5493(84)90058-X
27 A Dancygier, D Yankelevsky. High strength concrete response to hard projectile impact. International Journal of Impact Engineering, 1996, 18(6): 583–599
https://doi.org/10.1016/0734-743X(95)00063-G
28 Dassault Systemes. ABAQUS, 6.14, Simulia Corp., Providence, RI, USA, 2016
29 H D Hibbitt, B I Karlsson, E P Sorensen. ABAQUS User’s & Theory Manuals, 6.14, Dassault Systèmes Simulia Corp., Providence, RI, USA, 2013
30 S Lee, S S Cho, J E Jeon, K Y Kim, K S Seo. Impact analyses and tests of concrete overpacks of spent nuclear fuel storage casks. Nuclear Engineering and Technology, 2014, 46(1): 73–80
https://doi.org/10.5516/NET.06.2013.005
31 L J Malvar. Review of static and dynamic properties of steel reinforcing bars. Materials Journal, 1998, 95(5): 609–616
32 H Fu, M Erki, M Seckin. Review of effects of loading rate on concrete in compression. Journal of Structural Engineering, 1991, 117(12): 3645–3659
https://doi.org/10.1061/(ASCE)0733-9445(1991)117:12(3645)
33 C A Ross, J W Tedesco, S T Kuennen. Effects of strain rate on concrete strength. Materials Journal, 1995, 92(1): 37–47
34 J Leppänen. Concrete Structures Subjected to Fragment Impacts. Goteborg: Chalmers University of Technology, 2004
35 Q Li, H Meng. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. International Journal of Solids and Structures, 2003, 40(2): 343–360
https://doi.org/10.1016/S0020-7683(02)00526-7
36 CEB-FIP. Design of Concrete Structures. Euro-International Committee for Concrete (CEB). Lausanne, Switzerland, 1993
37 UFC. Unified facilities criteria (UFC), structures to resist the effects of accidental explosions, UFC 3-340-02. U.S. Department of Defence, 2008
38 H Kupfer, H K Hilsdorf, H Rusch. Behavior of concrete under biaxial stresses. ACI Journal Proceedings, 1969, 66(8): 656–666
39 H B Kupfer, K H Gerstle. Behavior of concrete under biaxial stresses. Journal of the Engineering Mechanics Division, 1973, 99(4): 853–866
40 J Lee, G L Fenves. Plastic-damage model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 1998, 124(8): 892–900
https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
41 M Hanifehzadeh, B Gencturk, K Willam. Dynamic structural response of reinforced concrete dry storage casks subjected to impact considering material degradation. Nuclear Engineering and Design, 2017, 325: 192–204
https://doi.org/10.1016/j.nucengdes.2017.10.001
42 T Jankowiak, T Lodygowski. Identification of parameters of concrete damage plasticity constitutive model. Foundations of civil and environmental engineering, 2005, 6(1):53–69
43 E. Hognestad Study of Combined Bending and Axial Load in Reinforced Concrete Members. Urbana: University of Illinois at Urbana Champaign, 1951
44 T Wang, T T Hsu. Nonlinear finite element analysis of concrete structures using new constitutive models. Computers & Structures, 2001, 79(32): 2781–2791
https://doi.org/10.1016/S0045-7949(01)00157-2
45 H G Harris, G Sabnis. Structural modeling and experimental techniques. CRC Press, Taylor & Francis Group, 1999
46 G R Cowper, P S Symonds. Strain-hardening and Strain-rate Effects in the Impact Loading of Cantilever Beams. DTIC Document, 1957
47 L J Malvar, J E Crawford. Dynamic increase factors for steel reinforcing bars. In: 28th DDESB Seminar, Orlando, USA, 1998
48 ASTM. Standard Specification for Carbon Structural Steel, A36/A36M. West Conshohocken: ASTM International, 2014
49 ASTM. Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement, ASTM A615/A615M-16. West Conshohocken: ASTM International, 2016
50 Y Kawamoto, J Stepan. Analytical Study of Reinforced Concrete Slab Subjected to Soft Missile Impact. SMiRT-23, Manchester, UK, 2015
51 J Rodríguez Soler, F J Martinez Cutillas, J Marti Rodriguez. Concrete constitutive model, calibration and applications. In: SIMULIA Community Conference, Vienna, Austria, 2013
52 R Kennedy. A review of procedures for the analysis and design of concrete structures to resist missile impact effects. Nuclear Engineering and Design, 1976, 37(2): 183–203
https://doi.org/10.1016/0029-5493(76)90015-7
53 A K Kar. Local effects of tornado-generated missiles. Journal of the Structural Division, 1978, 104(5): 809–816
54 R Linderman, J Rotz, G Yeh. Design of structures for missile impact. San Francisco: Bechtel Power Corp., 1974
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed